CHARACTERIZATION AND KINETICS STUDY OF ACTIVATED COCONUT SHELLS, COW BONES AND ZEOLITE BASED ADSORBENT FOR POME TREATMENT

ADELEKE ABDULRAHMAN OYEKANMI

A thesis submitted in
Fulfillment of the requirement for the award of the
Doctorate Degree of Philosophy of Civil Engineering

Faculty of Civil and Environmental Engineering
Universiti Tun Hussein Onn Malaysia

JANUARY 2018
DEDICATION

This project is dedicated to Almighty Allah, the maker of all things and to my family especially my parents Mr. and Mrs. Adeleke who have being the pillar of my life from cradle.
ACKNOWLEDGEMENT

I wish to express my profound gratitude to Almighty Allah who has made my studies to be possible overseas. I would like to extend my gratitude to my supervisor Prof. Ab Aziz Abdul Latiff for his guide, support, motivation and mentorship and for giving me the platform and opportunity to pursue this research. I cannot quantify my gratitude Prof, may Allah reward you abundantly. I am also thankful to my Co- Supervisor, Assoc. Prof Zawawi Daud for his assistance and encouragement and other members on my research team.

I wish to acknowledge both the academic and non-academic staff of the Faculty, my sincere thanks go to my Head of Department, Assoc. Prof. Mohammed Adib Mohd Razi, Deputy Dean of research and innovation, Associate Professor Norzila Othman, Director of micropollutant research center (MPRC) Associate Professor Radin Maya Mohammed Saphira and all the staff of water and environmental engineering.

I also wish to extend my gratitude to the science officers and colleagues; Falilah Mat Daud, Mohammed Nda, Dr Arif Rosli, Mahmood Hijab, Vicky Kumar, Mohammed Kabir and others. Thank you and God bless you all. I appreciate the assistance and patience granted to me by the laboratory technician of MPRC to use the laboratory facilities even beyond the official hours. I will not forget to thank the cleaners who made the workstation to be habitable throughout my study period.

My special gratitude goes to my family members, my father, my mother, siblings and my fiancée (AbdulKareem Robiah). Thank you for your support. Your love and care is well acknowledged. I really appreciate all the kind gestures, motivation and prayers. May Allah reward you all with long life and prosperity.

Finally, I would like to express my gratitude to the office of research, innovation and commercialization center (ORICC) Universiti Tun Hussein Onn Malaysia for making my study possible through the support with the research grant (U272).
ABSTRACT

Palm oil mill effluent (POME) is a high strength agro-allied wastewater containing both organic pollutants and heavy metals. The discharge of POME into the environment without adequate treatment contributes to diseases affecting humans and aquatic lives. However, there is the necessity to reduce the pollutants to a very low level of discharge to reduce the impact of the toxic effect of the pollutants on the environment and the aquatic population. The conventional approach for the treatment of POME is expensive compared to the method of adsorption. The method of adsorption has shown to be cost and time effective for research. Thus, the objective of this study was to prepare composite adsorbent from activated coconut shell carbon (ACSC), activated cow bone powder (ACBP) and zeolite for the treatment of POME using the optimum particle size obtained in a batch adsorption study. The characterization of the ACSC, ACBP and zeolite was obtained using pendant drop contact angle experiment. The result illustrated that the contact angles of the ACSC, ACBP and zeolite respectively were 105.20°, 95.70° and 25.20°. The result of the contact angles showed that activated coconut shell carbon and activated cow bone powder were hydrophobic materials while the zeolite was hydrophilic. The investigation of the chemical composition of the materials using energy dispersive x-ray (EDX) indicated that the major elements of both ACSC and ACBP were predominantly C, Ca²⁺ and O and Si for zeolite and C, Si, O, Na, Mg, Ca and P as the major elements on the surface of the composite while the XRF showed that the composite contained CaO and SiO₂ as the major compounds. The point of zero charge (pHₚzc) of 5.28 achieved showed that the composite contained acidic surface which influenced cationic exchange in the supernatant and the surface of the composite. The CEC after adsorption was observed as 0.8918±0.0669 meq/g. The optimal batch adsorption of COD and NH₃-N was obtained at under fixed condition of pH 7, 105 minutes contact time at 150 rpm shaking speed and 150 μm particle size for ACSC,
ACBP and zeolite. The prepared composite adsorbent contained functional groups of CH, C=C, C-O-C, OH using the Fourier transform irradiation (FT-IR) analysis. The optimal operation parameters of the adsorption process for the reduction of COD and NH$_3$-N using the central composite design (RSM) was recorded at pH 10, 50 rpm of shaking speed for 2 h and by using 3 mm of composite particle size and 125 gL$^{-1}$ of the adsorbent at initial concentration of POME of 1 ml per 500 ml volumetric flask. The results revealed that the investigated factors evidently induced the reduction of the parameters. The experimental data of COD, NH$_3$-N, Cd, Fe and Pb from the batch study were fitted to the isotherm and kinetic models. The result of the isotherm study fitted best to the Langmuir equation model for COD, NH$_3$-N, Fe and Cd which indicated that the adsorption of the pollutants from the supernatant was favourable on a mono layer surface. The Freundlich isotherm fitted experimental data better than the Langmuir and the Temkin isotherm for Pb which showed that the adsorption process was effective on a heterogeneous surface. The investigation showed that the uptakes of COD, NH$_3$-N, Cd, Fe and Pb from the experimental data were fitted to the pseudo-second order kinetic model which implied that the process of adsorption was by chemisorption. Furthermore, the fixed bed packed composite adsorption was conducted and the experimental data were fitted to Thomas and Adams-Bohart model. The model parameters were obtained from the breakthrough curves, the effective adsorption of COD was obtained at lower flow rate influent concentration. Desorption of the spent adsorbent was suitably conducted using 0.5M NaOH and breakthrough was obtained at longer retention time. It can be concluded that a mesoporous and granular composite adsorbent was effective for the treatment of both organic and heavy metal pollutants. It was observed that both batch isotherm and kinetic study can be effectively applied for the treatment of POME using the composite adsorbent, although the effectiveness of the batch adsorption study showed to be more suitable than the fixed bed continuous column for the removal of pollutants of POME. However, due to the potential of the composite adsorbent for the treatment of POME, the treatment efficiency of the adsorbent has shown that the composite have the potential to be used for the treatment of pollutants of high strength wastewater.
Efluen kilang minyak kelapa sawit (POME) adalah air sisa agro-pertanian yang mengandungi bahan pencemar organik dan logam berat. Pelepasan POME ke dalam persekitaran tanpa rawatan yang mencukupi menyumbang kepada penyakit yang memberi kesan kepada manusia dan kehidupan akuatik. Walau bagaimanapun, terdapat keperluan untuk mengurangkan pencemaran kepada tahap pelepasan yang sangat rendah untuk meminimumkan kesan pencemar toksik terhadap alam sekitar dan populasi akuatik. Pendekatan konvensional untuk rawatan POME adalah mahal berbanding kaedah penjerapan. Kaedah penjerapan telah menunjukkan kos dan masa yang berkesan untuk penyelidikan. Oleh itu, objektif kajian ini adalah untuk menyediakan penjerap komposit daripada karbon teraktif tempurung kelapa (ACSC), serbuk tulang lembu teraktif (ACBP) dan zeolit untuk rawatan POME menggunakan saiz partikel optimum yang diperolehi dalam ujikaji penjerapan kelompok. Pencirian ACSC, ACBP dan zeolit diperoleh dengan menggunakan ujikaji sudut sentuhan titis loket. Hasil keputusan menggambarkan bahawa sudut sentuhan titis loket ACSC, ACBP dan zeolit masing-masing adalah 105.20°, 95.70° dan 25.20°. Hasil daripada sudut sentuhan menunjukkan bahawa karbon teraktif tempurung kelapa dan serbuk tulang lembu teraktif adalah daripada bahan hidrofobik manakala zeolit adalah daripada bahan hidrofilik. Penyiasatan komposisi bahan kimia yang menggunakan sinaran-x penyebaran tenaga (EDX) menunjukkan bahawa unsur-unsur utama ACSC dan ACBP adalah C, Ca\(^{2+}\), dan O sebagai unsur utama pada permukaan komposit manakala XRF menunjukkan bahawa unsur-unsur utama pada permukaan komposit mengandungi CaO dan SiO\(_2\) sebagai sebatian utama. Titik caj sifar (pH\(_{pzc}\)) adalah 5.28 telah dicapai menunjukkan bahawa komposit mengandungi permukaan berasid yang mempengaruhi pertukaran kationik dalam supernatan dan permukaan komposit. CEC selepas penjerapan diperhatikan sebagai 0.8918 ± 0.0669 meq/g. Penjerapan kelompok optimum COD dan NH\(_3\)-N didapati dalam keadaan tetap iaitu pH 7, 105 minit masa sentuhan pada kelajuan goncangan 150 rpm dan saiz partikel 150μm untuk ACSC, ACBP dan zeolit. Penjerap komposit yang disediakan
mengandungi kumpulan berfungsi CH, C=C, C-O-C, OH menggunakan analisis radiasi transformasi Fourier (FT-IR). Parameter optimum operasi bekerja bagi proses penjerapan untuk penurunan COD dan NH\textsubscript{3}-N menggunakan reka bentuk komposit pusat (RSM) direkodkan pada pH 10, kelajuan goncangan 50 rpm selama 2 jam dan menggunakan 3 mm saiz partikel komposit dan 125 gL-1 dari penjerap pada kepekatan awal POME 1 ml terhadap 500 ml kelalang volumetrik. Hasil keputusan didapati bahawa faktor-faktor yang dikaji secara jelasnya mendorong terhadap penurunan parameter. Data eksperimen COD, NH\textsubscript{3}-N, Cd, Fe dan Pb dari ujikaji kelompok dipadankan dengan model isoterma dan kinetik. Hasil kajian padanan isoterma terbaik adalah model persamaan Langmuir untuk COD, NH\textsubscript{3}-N, Fe dan Cd yang menunjukkan bahawa penjerapan bahan pencemar dari supernatant adalah digemari pada permukaan lapisan tunggal. Data eksperiman daripada isoterma Freundlich yang dipadankan adalah lebih baik daripada isoterma Langmuir dan Temkin untuk Pb yang menunjukkan bahawa proses penjerapan berkesan pada permukaan yang heterogen. Penyiasatan didapati menunjukkan bahawa pengambilan COD, NH\textsubscript{3}-N, Cd, Fe dan Pb daripada data eksperimen telah dipadankan dengan model kinetik pseudo-tertib kedua yang menunjukkan bahawa proses penjerapan adalah secara penjerapan kimia. Seterusnya, penjerapan komposit lapisan tetap yang telah dijalankan dan data eksperimen berikut telah dipadankan dengan model Thomas dan Adams-Bohart. Parameter model telah diperolehi daripada lengkung bulus, penjerapan COD yang berkesan ditunjukkan melalui kadar aliran yang lebih rendah. Penjerapan semula penjerap telah dilakukan dengan menggunakan 0.5M NaOH dan bulus didapati pada masa tahanan yang lebih lama. Secara kesimpulannya didapati bahawa penjerap komposit mesoliang dan butiran adalah berkesan untuk merawat kedua-dua bahan pencemar organik dan logam berat. Telah diperhatikan bahawa kajian isoterma dan kinetik kedua-duanya secara berkesan boleh digunakan untuk rawatan POME dengan menggunakan penjerap komposit, walaupun keberkesanan ujikaji penjerapan kelompok menunjukkan ianya lebih sesuai daripada turus penjerapan lapisan tetap untuk penyingkirkan bahan pencemar POME. Walau bagaimanapun, disebabkan oleh potensi penjerap komposit untuk rawatan POME, kecekapan rawatan penjerap telah menunjukkan bahawa penjerap komposit mempunyai potensi untuk digunapakai dalam rawatan pencemaran air sisa berkekuatan tinggi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF AWARDS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objectives of the Study</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Hypothesis</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Scope of Work</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Significance of the Study</td>
<td>8</td>
</tr>
<tr>
<td>1.7 Thesis Organization</td>
<td>9</td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10

2.2 Palm Oil Processing and Production 11

2.3 Palm Oil Mill Effluent 12

2.4 Trends in POME Treatment Methods 15
 2.4.1 Conventional Treatment Method 16
 2.4.2 Physical and Chemical Processes 22

2.5 Adsorption 30
 2.5.1 Physiosorption 31
 2.5.2 Chemisorption 31

2.5.3 Wetting and Fluid Adsorption on Adsorbent Surfaces 33

2.5.4 Surface Tension and Contact Angles 33

2.6 Hydrophobicity and Hydrophilicity of Adsorbent Material 34
 2.6.1 Hydrophobicity of Adsorbent Material 34
 2.6.2 Hydrophilicity of Adsorbent Materials 35

2.7 Treatment of POME Using Adsorption 36

2.8 Adsorbent Materials 40
 2.8.1 Activated Carbon Adsorbent 40

2.8.2 Application of Locally Sourced Adsorbents Materials 42
 2.8.2.1 Coconut Shell Adsorbent 44
 2.8.2.2 Bone Activated Carbon Adsorbent 45
 2.8.2.3 Zeolite Adsorbent 46

2.8.3 Composite Adsorbent 47

2.8.4 Optimization of Operating Conditions for the Adsorption Process 48

2.9 Adsorption Isotherm and Mechanism 50

2.10 Kinetic Adsorption Studies 57
 2.10.1 Pseudo-First Order Equation 58
 2.10.2 Pseudo- Second Order Equation 59

2.11 Fixed Bed Adsorption 63
 2.11.1 Principle of Column Adsorption 64
 2.11.2 Breakthrough Curve Model 65
 2.11.2.1 Thomas Model 65
2.11.2.2 The Yoon-Nelson Model 66
2.11.2.3 Adam-Bohart Model 66

2.12 Key Findings of Literature Review 67

CHAPTER 3 METHODOLOGY

3.1 Introduction 69
3.2 Materials 71
 3.2.1 Reagents and Chemicals 71
3.3 Preparation of the Adsorbate Solution 72
 3.3.1 Standard Solution for Heavy Metals 73
 3.3.2 Preparation of Calibration Curve 73
3.4 Preparation of Composite Materials 74
 3.4.1 Experimental Analysis of the Starting Adsorbents Materials 75
 3.4.2 Experimental Analysis for the Activated Coconut Shell Carbon 75
 3.4.3 Experimental Analysis for the Preparation of Activated Cow Bone Powder 76
 3.4.4 Experimental Analysis of Zeolite 77
3.5 Surface Characterization of Adsorbent 78
 3.5.1 Physical Characterization 78
 3.5.1.1 Surface Tension 80
 3.5.1.2 Bulk Density 81
 3.5.1.3 Porosity Volume 82
 3.5.1.4 Morphology Study 82
 3.5.1.5 BET Surface Area 83
 3.5.2 Chemical Characterization 81
 3.5.2.1 Chemical Composition 81
 3.5.2.2 Functional Group 82
 3.5.2.3 Point of Zero Charge 82
 3.5.2.4 Cation Exchange Capacity 82
3.6 Optimization of Process Parameters 83
 3.6.1 Batch Adsorption Experiment 84
3.6.1.1 Linear Optimization and the Preparation of Composite

3.6.2 Optimization of the Process Parameters using Central Composite Design

3.6.2.1 Experimental Design

3.7 Adsorption Isotherm Studies

3.8 Batch Adsorption Kinetic Studies

3.9 Procedure for Fixed Bed Adsorption

3.10 Regeneration of Spent Composite Adsorbent

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Characterization of POME

4.3 Characterization of Adsorbents

4.3.1 Physical Characterization of the Adsorbents

4.3.1.1 Contact Angle of Adsorbent

4.3.1.2 Bulk Density of Adsorbent

4.3.1.3 Surface Morphology

4.3.2 Chemical Characterization of the Adsorbent

4.4 Preparation of the Composite Adsorbent

4.4.1 Linear Optimization of the Single Adsorbents

4.4.2 Optimization of Process Parameters of the Composite

4.4.2.1 Development of Regression Model for the Response Parameters on the Composite.

4.4.2.2 Surface Morphology of Composite

4.4.2.3 BET Surface Area of Composite

4.4.2.4 EDX Analysis of Composite

4.4.2.5 Point of Zero Charge of Composite Adsorbent

4.4.2.6 Cationic Exchange Capacity of Adsorbent

4.4.2.7 FTIR Analysis of Composite

4.5 Batch Adsorption Studies
4.5.1 Adsorption Isotherms 141
 4.5.1.1 Batch Adsorption Isotherm of COD 142
 4.5.1.2 Batch Adsorption Isotherm of NH₃-N 145
 4.5.1.3 Batch Adsorption Isotherm of Cadmium 148
 4.5.1.4 Batch Adsorption Isotherm of Lead 150
 4.5.1.5 Batch Adsorption Isotherm of Iron 152

4.5.2 Batch Kinetic Studies 154
 4.5.2.1 Batch Kinetic Study of COD on Composite 155
 4.5.2.2 Batch Kinetic Study of NH₃-N on Composite 157
 4.5.2.3 Batch Kinetic Study of Cadmium on Composite 159
 4.5.2.4 Batch Kinetic Study of Lead on Composite 161
 4.5.2.5 Batch Kinetic Study of Iron on Composite 162

4.6 Fixed Bed Adsorption Studies 165
 4.6.1 Introduction 165
 4.6.1.1 Fixed Bed Column Studies 167
 4.6.1.2 Effect of the Influent Flow Rate 167
 4.6.2 Mechanism of the Packed Column Adsorption 169
 4.6.2.1 Application of Thomas Model 171
 4.6.2.2 Application of Adam-Bohart Model 171

4.7 Regeneration/ Desorption of Spent Composite 172

CHAPTER 5 CONCLUSION AND RECOMMENDATION
 5.1 Conclusion 176
 5.2 Recommendation 179

REFERENCES
APPENDIX A 215
APPENDIX B 221

VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristic of palm oil mill effluent (POME)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Prevailing effluent discharge standard for crude palm oil mills</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>(b) Environmental Quality Act 1974 for POME Discharged</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Treatment of POME using the anaerobic system</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical-Chemical method of treatment of POME</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Adsorption of POME</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Optimum mixing ratio of hydrophobic and hydrophilic adsorbent</td>
<td>49</td>
</tr>
<tr>
<td>2.7</td>
<td>Separator factor</td>
<td>53</td>
</tr>
<tr>
<td>2.8</td>
<td>Adsorption isotherms of heavy metals and organic pollutants</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Adsorption kinetics of pollutants onto the adsorbent</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) List of reagents and chemicals</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>(b) POME characteristics and methods</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Optimum ratio of the hydrophobic-hydrophilic ratio by volume of the adsorbent</td>
<td>86</td>
</tr>
<tr>
<td>3.3</td>
<td>Adsorbent-Binder Ratio</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental design for the optimization of the response factors</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Design of Fixed Bed Column</td>
<td>92</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) Physico-chemical characteristics of raw POME (N=3)</td>
<td>97</td>
</tr>
<tr>
<td>4.1</td>
<td>(b) Heavy Metal characteristics of raw POME (N=3)</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Bulk densities of starting materials</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>(a): Batch Adsorption of single adsorbent of different particle sizes for COD removal</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>(b) Batch Adsorption of single adsorbent of different particle sizes for NH₃-N removal</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>(a) Linear Optimization of Hydrophobic adsorbent</td>
<td>111</td>
</tr>
<tr>
<td>Section</td>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>(b) Linear Optimization of Hydrophilic adsorbent</td>
<td>112</td>
</tr>
<tr>
<td>4.5</td>
<td>Linear optimization of Hydrophobic-hydrophilic adsorbent</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>Optimum mixing ratio of adsorbents</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>(a) Batch Adsorption of COD from the operating parameters of CCD</td>
<td>117</td>
</tr>
<tr>
<td>4.7</td>
<td>(b) Batch Adsorption of NH$_3$-N from the operating parameters of CCD</td>
<td>119</td>
</tr>
<tr>
<td>4.8</td>
<td>Regression Coefficient and their Significance of the Linear, Quadratic and Cubic Model for the Reduction of COD and NH$_3$-N from POME by using Central Composite Design</td>
<td>121</td>
</tr>
<tr>
<td>4.9</td>
<td>Analysis of the variance (ANOVA) of the response surface quadratic model for the reduction of COD and NH$_3$-N from POME by natural composite</td>
<td>125</td>
</tr>
<tr>
<td>4.10</td>
<td>Specific surface area and pore size distribution of composite</td>
<td>130</td>
</tr>
<tr>
<td>4.11</td>
<td>(a) Element composition of composite adsorbent</td>
<td>131</td>
</tr>
<tr>
<td>4.11</td>
<td>(b) Chemical Composition of the Composite Adsorbent</td>
<td>132</td>
</tr>
<tr>
<td>4.12</td>
<td>Cationic Exchange Capacity of Adsorbents</td>
<td>136</td>
</tr>
<tr>
<td>4.13</td>
<td>FT-IR Spectra absorption peak frequencies and the corresponding functional groups on the composite before and after adsorption process conducted at the optimal conditions</td>
<td>139</td>
</tr>
<tr>
<td>4.14</td>
<td>Batch adsorption isotherm of COD on composite</td>
<td>145</td>
</tr>
<tr>
<td>4.15</td>
<td>Batch adsorption isotherm of NH$_3$-N on composite</td>
<td>147</td>
</tr>
<tr>
<td>4.16</td>
<td>Batch adsorption isotherm of Cd on composite</td>
<td>149</td>
</tr>
<tr>
<td>4.17</td>
<td>Batch adsorption isotherm of Pb on composite</td>
<td>151</td>
</tr>
<tr>
<td>4.18</td>
<td>Batch adsorption isotherm of Fe on composite</td>
<td>153</td>
</tr>
<tr>
<td>4.19</td>
<td>Batch Kinetic Study of COD on composite</td>
<td>156</td>
</tr>
<tr>
<td>4.20</td>
<td>Batch Kinetic Study of NH$_3$-N on composite</td>
<td>158</td>
</tr>
<tr>
<td>4.21</td>
<td>Batch Kinetic Study of Cd on composite</td>
<td>160</td>
</tr>
<tr>
<td>4.22</td>
<td>Batch Kinetic Study of Pb on composite</td>
<td>162</td>
</tr>
<tr>
<td>4.23</td>
<td>Batch Kinetic Study of Fe on composite</td>
<td>163</td>
</tr>
<tr>
<td>4.24</td>
<td>Batch isotherm study of solutes on composite</td>
<td>165</td>
</tr>
<tr>
<td>4.25</td>
<td>Batch kinetic study of solutes on composite</td>
<td>165</td>
</tr>
<tr>
<td>4.26</td>
<td>Fixed bed adsorption of packed composite</td>
<td>167</td>
</tr>
</tbody>
</table>
4.27 Fixed bed desorption using eluting agent at optimum inflow rate
4.28 Fixed bed adsorption on regenerated composite at optimum flow rate
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Palm oil mill processing plant</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Frame Work of Research Activities</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Activated coconut shell carbon</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of activated cow bone powder</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Zeolite</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Process of Preparation of composite</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Preparation of composite</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Diagram of the Column for Fixed Bed Adsorption</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) Contact angle of activated coconut shell carbon</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(b) Contact angle of activated cow bone powder</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(c) Contact angle of zeolite</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>(a) Surface morphology of the activated coconut shell carbon</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>(b) Surface morphology of activated cow bone powder</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>(c) Surface morphology of zeolite</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>(a) Batch Adsorption of COD</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>(b) Batch Adsorption of NH₃-N</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>(a) Optimization of hydrophobic adsorbents</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>(b) Optimization of hydrophilic adsorbent</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Optimization of hydrophobic-hydrophilic ratio</td>
<td>113</td>
</tr>
<tr>
<td>4.6</td>
<td>Optimization of the adsorbent-binder ratio</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>(a) (1) Interaction between pH and initial concentration of composite</td>
<td></td>
</tr>
</tbody>
</table>
(2) Interaction between shaking speed and time 127
(b) Interaction between time and adsorbent dosage 127

4.7 (b) (1) Interaction between shaking speed and time 128
(2) Interaction between time and adsorbent dosage 128

4.8 (a) SEM micrograph of the composite before treatment 128
(b) Optimization of hydrophilic adsorbent 130

4.9 (a) Chemical composition of the composite before adsorption 132
(b) SEM micrograph of the composite after treatment 134

4.10 Point of zero charge of the composite adsorbent 135
4.11 FT-IR analysis of the composite before and after treatment 137
4.12 Batch adsorption of COD removal on composite 140
4.13 Batch adsorption of NH$_3$-N on composite 140
4.14 Linear regression of Langmuir isotherm for COD on composite 143
4.15 Linear regression of Freundlich for COD on composite 144
4.16 Linear regression of Temkin for COD on composite 144
4.17 Linear regression of Langmuir isotherm on NH$_3$-N 145
4.18 Linear regression of Freundlich Isotherm on NH$_3$-N 146
4.19 Linear regression of Temkin Isotherm on NH$_3$-N 146
4.20 Linear regression of Langmuir Isotherm on Cadmium 147
4.21 Linear regression of Freundlich on Cadmium 148
4.22 Linear regression of Temkin on Cadmium 148
4.23 Linear regression of Langmuir Isotherm on Lead 149
4.24 Linear regression of Freundlich Isotherm on Lead 150
4.25 Linear regression of Temkin isotherm on Lead 150
4.26 Linear regression of Langmuir isotherm on iron 151
4.27 Linear regression of Freundlich isotherm on iron 152
4.28 Linear regression of Temkin isotherm on iron 152
4.29 Linear regression of first order kinetic on COD 155
4.30 Linear regression of pseudo second order on COD 155
4.31 Linear regression of pseudo first order on NH$_3$-N 157
4.32 Linear regression of pseudo second order on NH$_3$-N 157
4.33 Linear regression pseudo first order kinetic on cadmium 159
4.34 Linear regression of pseudo second order kinetic on cadmium 159
4.35 Linear regression of pseudo first order on lead 160
4.36 Linear regression of pseudo second order kinetic on lead 161
4.37 Linear regression of pseudo first order on iron 162
4.38 Linear regression of pseudo second order on iron 163
4.39 Ion exchange of pollutants and elements on the functional group on the active surface of the composite 164
4.40 Break through curve at different flow rates influent concentration 168
4.41 Experimental data fitted to fixed bed Thomas model 170
4.42 Experimental data fitted to Adam-Bohart Model 171
4.43 Desorption of COD on spent adsorbent 173
4.44 Break through curve after regeneration of composite 173
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Binding surface area</td>
</tr>
<tr>
<td>B</td>
<td>Temkin constant</td>
</tr>
<tr>
<td>B</td>
<td>Blank</td>
</tr>
<tr>
<td>Ce</td>
<td>Final equilibrium concentration</td>
</tr>
<tr>
<td>CO</td>
<td>Initial concentration</td>
</tr>
<tr>
<td>CO</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Cv</td>
<td>Crystal violet</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CT</td>
<td>Outlet concentration</td>
</tr>
<tr>
<td>D</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>H</td>
<td>Initial rate of adsorption</td>
</tr>
<tr>
<td>K</td>
<td>Kinetic constant</td>
</tr>
<tr>
<td>Kf</td>
<td>Adsorbent adsorbed per unit equilibrium</td>
</tr>
<tr>
<td>Ki</td>
<td>Intraparticle diffusion rate constant</td>
</tr>
<tr>
<td>KL</td>
<td>Langmuir constant</td>
</tr>
<tr>
<td>KT</td>
<td>Temkin constant</td>
</tr>
<tr>
<td>KTH</td>
<td>Thomas rate constant</td>
</tr>
<tr>
<td>Kyn</td>
<td>Rate constant</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>Lb</td>
<td>Pound</td>
</tr>
<tr>
<td>Ft</td>
<td>Feet</td>
</tr>
<tr>
<td>M</td>
<td>Mass</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>N</td>
<td>Total available sites</td>
</tr>
<tr>
<td>N</td>
<td>Freundlich slope</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>Ns</td>
<td>Number of sites occupied</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>P<sub>o</sub></td>
<td>Vapour pressure</td>
</tr>
<tr>
<td>Q</td>
<td>Flow rate</td>
</tr>
<tr>
<td>q<sub>e</sub></td>
<td>Quantity of the adsorbed per unit mass of adsorbent</td>
</tr>
<tr>
<td>q<sub>o</sub></td>
<td>Maximum solid phase concentration of the solute</td>
</tr>
<tr>
<td>q<sub>t</sub></td>
<td>Amount of the adsorbed per unit time</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>R<sub>L</sub></td>
<td>Separation coefficient</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>S</td>
<td>Sample</td>
</tr>
<tr>
<td>U</td>
<td>Speed of gas out</td>
</tr>
<tr>
<td>V</td>
<td>Volume of solution</td>
</tr>
<tr>
<td>V<sub>eff</sub></td>
<td>Volume of effluent</td>
</tr>
<tr>
<td>V<sub>ε</sub></td>
<td>Volume porosity</td>
</tr>
<tr>
<td>X</td>
<td>Amount of adsorbent in the column</td>
</tr>
<tr>
<td>W</td>
<td>Weight of adsorbent</td>
</tr>
<tr>
<td>Z</td>
<td>Column bed height</td>
</tr>
<tr>
<td>Λ</td>
<td>Time required for breakthrough at 50%</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic analyst spectrometer</td>
</tr>
<tr>
<td>AF</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>ACBP</td>
<td>Activated cow bone powder</td>
</tr>
<tr>
<td>ACSC</td>
<td>Activated coconut shell carbon</td>
</tr>
<tr>
<td>AF</td>
<td>Anaerobic filter</td>
</tr>
<tr>
<td>ASB</td>
<td>Activated sludge biomass</td>
</tr>
<tr>
<td>ASBR</td>
<td>Anaerobic sequencing batch reactor</td>
</tr>
<tr>
<td>ATA</td>
<td>Attapulgate composite</td>
</tr>
<tr>
<td>BDDT</td>
<td>Brunauer, Deming, Deming Teller</td>
</tr>
<tr>
<td>BDOC</td>
<td>Biodegradable organic compound</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer Emmet and Teller</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>BF</td>
<td>Basil Fuchsin</td>
</tr>
<tr>
<td>CA</td>
<td>Catalytic activity</td>
</tr>
<tr>
<td>CBP</td>
<td>Cow bone powder</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CPW</td>
<td>Crude petroleum wastes</td>
</tr>
<tr>
<td>CR</td>
<td>Congo red</td>
</tr>
<tr>
<td>CV</td>
<td>Crystal violet</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>DKR</td>
<td>Dubinin-Kagener Radushkevich</td>
</tr>
<tr>
<td>EBCT</td>
<td>Empty bed contact time</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive x-ray</td>
</tr>
<tr>
<td>EF</td>
<td>Electron–Fenton process</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunches</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental protection agency</td>
</tr>
<tr>
<td>FAS</td>
<td>Ferrous ammonium sulphate</td>
</tr>
<tr>
<td>FO</td>
<td>Forward osmosis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform irradiation</td>
</tr>
<tr>
<td>GAC</td>
<td>Granular activated carbon</td>
</tr>
<tr>
<td>GCF</td>
<td>Global contamination factor</td>
</tr>
<tr>
<td>HAP</td>
<td>Hydroxyapatite</td>
</tr>
<tr>
<td>ICF</td>
<td>Individual contamination factor</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>INWQS</td>
<td>Interim water quality standard</td>
</tr>
<tr>
<td>MAS</td>
<td>Membrane anaerobic system</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>MF</td>
<td>Micro filtration</td>
</tr>
<tr>
<td>MO</td>
<td>Methyl orange</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material safety and data sheet</td>
</tr>
<tr>
<td>MTZ</td>
<td>Mass transfer zone</td>
</tr>
<tr>
<td>NF</td>
<td>Nano filtration</td>
</tr>
<tr>
<td>OLR</td>
<td>Organic loading rate</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland cement</td>
</tr>
<tr>
<td>OPF</td>
<td>Oil palm fronds</td>
</tr>
<tr>
<td>OPT</td>
<td>Oil palm trunk</td>
</tr>
<tr>
<td>PAC</td>
<td>Powdered activated carbon</td>
</tr>
<tr>
<td>PCB</td>
<td>Poly chlorinated biphenyls</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>POMS</td>
<td>Palm oil mill sludge</td>
</tr>
<tr>
<td>POFA</td>
<td>Palm oil fuel ash</td>
</tr>
<tr>
<td>PPB</td>
<td>Part per million</td>
</tr>
<tr>
<td>PPF</td>
<td>Palm processed fibers</td>
</tr>
<tr>
<td>PSAC</td>
<td>Palm shell activated carbon</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl alcohol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended solids</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strength, opportunity, weakness and threat</td>
</tr>
<tr>
<td>TN</td>
<td>Total nitrogen</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>TS</td>
<td>Total solids</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>UASB</td>
<td>Up-flow anaerobic sludge blanket</td>
</tr>
<tr>
<td>UASFF</td>
<td>Up flow anaerobic sludge fixed film</td>
</tr>
<tr>
<td>UF</td>
<td>Ultra filtration</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile suspended solids</td>
</tr>
<tr>
<td>WAS</td>
<td>Waste activated sludge</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>A</td>
<td>Characterization of Adsorbents</td>
</tr>
</tbody>
</table>

No table of figures entries found.
REFERENCES

demand (COD) in municipal wastewater. Bioresource technology, 94(2), 129-135.

from mesophase pitch: A compromise between microporosity and bulk density. *Carbon*, 93, 11-21.

Hazlan. (2006). Treatment of Palm Oil Mill Effluent (POME) using membrane bioreactor. *Faculty of Chemical and Natural Resources Engineering Technology University College of Engineering and Technology Malaysia. 16-24*

assisted phosphoric acid activation: application in methylene blue adsorption. BioResources, 8(2), 2950-2966.

Wong, F., & Yong, S. (2013). Investigation of the Effect of Phosphoric Acid (H3PO4) on Rate of Oil and Solid Separation in Palm Oil Mill Clarifier *Developments in Sustainable Chemical and Bioprocess Technology* (pp. 103-109): Springer.

