CHARACTERIZATION OF WHOLE-BODY VIBRATION FOR MONORAIL PASSENGER RIDE COMFORT

QADIR BAKHSH JAMALI

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy

Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

MAY 2018
This thesis is dedicated to my Parents

(Haji Ghulam Muhammad Jamali and Razia Begum)

&

My Wife

(Aisha Jamali)

My Daughters

(Sahiqa Naz & Amima Naz)

My Son

(Abdul Haseeb Jamali)
ACKNOWLEDGEMENT

ALHAMDULILAH, a deep and humble gratitude to ALLAH Almighty for providing the opportunity and giving me the strength to complete this work.

I would like to express heartiest thanks to my respectable supervisor Prof. Dr. Khalid Bin Hasnan whose encouragement, guidance and continuous support enabled me to carry out this research work. My heartiest appreciation for his humble behavior and kind nature.

I would like to acknowledge my employer Quaid-e-Awam University of Engineering, Science & Technology Nawabshah, Pakistan and Ministry of Higher Education, Pakistan for funding me to pursue higher studies under the scholarship scheme title EE & AF. Also, to Universiti Tun Hussein Onn Malaysia for providing me such a wonderful environment and facilities during this journey.

My sincere thanks to the officers of Research and Development Department Rapid KL Prasarana Bhd; Mr. S. M. Sabri Ismail, Ms. Noor Aqilah Ahmad Tajedi, Mr. Muhammad Fazli bin Zaharuddin, Mr. Chandran A/L Namasivayam and other staff from engineering department, for their guidance, support and providing technical facilities for this work.

I also would like to thank my dearest friends, who helped me during this hard time Aqeel Ahmed, Muhammad Mujtaba, Danish Ali, Ali Ahmed Jamali, Ali Raza Jamali, Fahad Sherwani, Dr. Kamran Latif, Samiullah and Ashfaque Ahmed.

Moreover, the completion of this study was not possible without the endless prayers, moral support and encouragement of my parent, my wife and children. Their sacrifices for staying away from me for very long time is also appreciable and that become, my high motivation to complete this study so that we can meet as soon as possible.

Very special thanks to my younger brothers Faiz Muhammad Jamali, Javed Ahmed Jamali, Sajjad Ahmed Jamali, Engr Irfan Ali Jamali and Asad Ali Jamali for their continuous support to our parents and my family at Pakistan in my absence.
ABSTRACT

Train travel has always been a major mode of public transport in developed countries. In the inner cities monorails are often used, which are operated at elevated rail or beam, the main advantage being traffic interactions can be minimized while maintaining its original landscape. Ride comfort is the basic requirement for every passenger in all kind of public transports. In monorail, vibration is considered as major factor of discomfort, it transmitted to human body, which contribute many health issues. The aim of this study was to evaluate the whole-body vibration transmission and the effects to the monorail passengers. There were total of twenty-four experiments conducted in a two-car train monorail on its complete line from Kuala Lumpur Sentral to Titiwangsa stations. Human vibration meter (HVM-100) with tri-axial accelerometer pad was used to measure the WBV of passengers and International Standards Organization (ISO) 2631-1: 1997 was used for analysis. The experimental results show that the daily vibration exposure 0.81 m/s² was higher than the action value 0.5 m/s² of the standard during peak operation and 0.82 m/s² during off-peak operation. The health effect was measured 9.90 m/s¹.⁷⁵ during peak operation and 9.94 m/s¹.⁷⁵ during off-peak operation; both values are observed in moderate health effect zone as per standard (8.5 m/s¹.⁷⁵ to 17 m/s¹.⁷⁵). Moreover, the passenger ride comfort was measured, it was found to be fairly-uncomfortable at rear bogie and not-uncomfortable at center of car. The statistical analysis has proven the significance of orientation, location and operating hours by significant value p = 0.000 (i.e. p < α) with 29.5% of the variance has been accounted between groups. This provides justification to standardization of proper priority seating zone. The findings of this study can assist in the standard specification for seating design of monorail. The statistical analysis shows that all results are statistically significant for orientations, locations as well as operations.
ABSTRAK

Meter getaran manusia (HVM-100) dengan pad pecutan tri-axial digunakan untuk memantau WBV penumpang. Manakala untuk pengukuran dan analisis, Piawaian Pertubuhan Antarabangsa (ISO) 2631-1: 1997 telah digunakan didalam kajian ini. Keputusan eksperimen telah menunjukkan bahawa pendedahan getaran harian 0.81 m/s² adalah lebih tinggi daripada nilai piawaian tindakan iaitu 0.5 m/s² semasa operasi puncak dan 0.82 m/s² semasa operasi luar puncak. Kesan kesihatan juga telah diukur sebanyak 9.90 m/s¹.⁷⁵ semasa operasi puncak dan 9.94 m/s¹.⁷⁵ semasa operasi luar puncak; pemerhatian terhadap kedua-dua nilai ini telah dilakukan bagi zon kesan kesihatan yang sederhana mengikut piawaian yang ditetapkan (8.5 m/s¹.⁷⁵ hingga 17 m/s¹.⁷⁵). Selain itu, keselesaan penumpang semasa perjalanan juga telah diukur. Kajian mendapati penumpang kurang selesea pada bogie belakang dan tidak selesea di tengah-tengah untuk kedua-kedua kereta api pada waktu operasi. Dapatan kajian ini memberikan justifikasi kepada standard zon keutamaan yang sesuai dengan penumpang yang sensitif kepada getaran. Disamping itu, ia dapat membantu menentukan standard reka bentuk kedudukan kerusi dalam monorel. Analisis statistik juga menunjukkan bahawa semua dapatan kajian adalah signifikan secara statistik bagi orientasi, lokasi dan operasi.
TABLE OF CONTENTS

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xix
LIST OF APPENDICES xxi
LIST OF PUBLICATIONS xxii

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Problem statement 3
1.3 Aim of study 4
1.4 Objectives of study 4
1.5 Scope of study 4
1.6 Hypotheses of study 5
1.7 Significance of study 5
1.8 Thesis layout 6

CHAPTER 2 LITERATURE REVIEW 8
2.1 Railway vehicle 9
2.2 Monorail 10
2.2.1 Types of monorail 12
2.3 Kuala Lumpur monorail 12
2.4 Vibration 16
2.4.1 Jerk 17
2.5 Whole-body vibration 18

vii
2.5.1 Health effects of whole-body vibration 20
 2.5.1.1 Whole-body vibration and lower back pain 21
2.5.2 Whole-body vibration on the train 23
2.5.3 Whole-body vibration measurements 23
2.6 International Standard Organization ISO 2631-1: 1997 25
 2.6.1 Weighted acceleration (aw) 26
 2.6.2 Crest Factor (CF) 27
 2.6.3 Vibration Dose Value (VDV) 27
 2.6.4 Estimated Vibration Dose Value (eVDV) 28
 2.6.5 Daily Vibration Exposure A(8) 28
 2.6.6 Motion Sickness Dose Value (MSDV) 29
2.7 Ride comfort 30
 2.7.1 The effect of WBV duration on ride comfort 31
 2.7.2 The effect of WBV magnitude on ride comfort 33
 2.7.3 The effect of WBV direction on ride comfort 34
 2.7.4 Ride comfort evaluation 35
 2.7.5 Weighted root mean square (r.m.s) 36
 2.7.6 Seat effective amplitude transmissibility (SEAT) 37
2.8 Factors that affect the ride comfort 37
2.9 Research gap in whole-body vibration evaluation 39
2.10 Chapter summary 43

CHAPTER 3 RESEARCH METHODOLOGY 45
3.1 Research design 45
3.2 Experimental setup 46
 3.2.1 Trip sequence 48
 3.2.2 Number of tests 49
 3.2.3 Experimental device 51
3.3 Procedure of whole-body vibration measurement 52
3.4 Statistical analysis 54
 3.4.1 Analysis of variance (ANOVA) 55
3.4.2 Independent Sample T-test (IST-test) 55
3.5 Chapter summary 56

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 58
4.1 Introduction 58
4.2 Evaluation of whole-body vibration on passengers 59
 4.2.1 Daily Vibration Exposure A(8) 59
 4.2.1.1 Peak operation 60
 4.2.1.2 Off-peak operation 60
 4.2.2 Health effect 61
 4.2.2.1 Peak operation 62
 4.2.2.2 Off-peak operation 62
 4.2.3 Motion Sickness Dose Value (MSDV) 63
 4.2.3.1 Peak operation 63
 4.2.3.2 Off-peak operation 65
 4.2.4 Ride comfort (RC) 66
 4.2.4.1 Peak operation 66
 4.2.4.2 Off-peak operation 67
 4.2.5 Seat Effect Amplitude Transmissibility (SEAT) 68
 4.2.5.1 Peak operation 68
 4.2.5.2 Off-peak operation 70
 4.2.6 Comparison between orientations within same location 71
 4.2.6.1 During peak operation at bogie 1 71
 4.2.6.2 During peak operation at bogie 2 72
 4.2.6.3 During peak operation at center of car 74
 4.2.6.4 During off-peak operation at bogie 1 75
 4.2.6.5 During off-peak operation at bogie 2 76
 4.2.6.6 During off-peak operation at center of car 78
 4.2.7 Comparison between locations within same orientation 79
 4.2.7.1 During peak operation in standing position 79
4.2.7.2 During peak operation in sitting position 80
4.2.7.3 During off-peak operation in standing position 82
4.2.7.4 During off-peak operation in sitting position 83
4.2.8 Comparison between operations within same location 84
4.2.8.1 Above bogie 1 in standing orientation 84
4.2.8.2 Above bogie 1 in sitting orientation 85
4.2.8.3 Above bogie 2 in standing orientation 87
4.2.8.4 Above bogie 2 in sitting orientation 88
4.2.8.5 At center of car in standing orientation 89
4.2.8.6 At center of car in sitting orientation 90
4.3 Chapter summary 91

CHAPTER 5 STATISTICAL RESULTS AND DISCUSSION 93
5.1 Analysis of Variance (ANOVA) 93
5.1.1 Comparison between locations within same orientation 94
5.1.1.1 Peak operation in standing orientation during downstream trip 94
5.1.1.2 Peak operation in standing orientation during upstream trip 97
5.1.1.3 Peak operation in sitting orientation during downstream trip 99
5.1.1.4 Peak operation in sitting orientation during upstream trip 102
5.1.1.5 Off-peak operation in standing orientation during downstream trip 104
5.1.1.6 Off-peak operation in standing orientation during upstream trip 107
5.1.1.7 Off-peak in sitting orientation during downstream trip 110
5.1.1.8 Off-peak in sitting orientation during upstream trip 112

5.2 Independent samples T-test 115

5.2.1 Comparison between orientations within same location 115
 5.2.1.1 During peak operation above bogie 1 115
 5.2.1.2 During peak operation above bogie 2 121
 5.2.1.3 During peak operation at center of car 127
 5.2.1.4 During off-peak operation above bogie 1 133
 5.2.1.5 During off-peak operation above bogie 2 140
 5.2.1.6 During off-peak operation at center of car 146

5.2.2 Comparison between operations within same location 152
 5.2.2.1 Above bogie 1 in standing orientation 152
 5.2.2.2 Above bogie 1 in sitting orientation 154
 5.2.2.3 Above bogie 2 in standing orientation 155
 5.2.2.4 Above bogie 2 in sitting orientation 156
 5.2.2.5 At center of car in standing orientation 158
 5.2.2.6 At center of car in sitting orientation 159

5.3 Chapter summary 160

CHAPTER 6 ANALYSIS AND IMPLICATION 162

6.1 Introduction 162

6.2 Justification of study hypotheses 163
 6.2.1 There is statistically significant difference of whole-body vibration transmission to the passengers between the standing and sitting orientation 163
 6.2.2 There is statistically significant difference of whole-body vibration transmission to the passengers between the locations such as
above bogie 1, above bogie 2 and at center of car

6.2.3 There is statistically significant difference of whole-body vibration transmission to the passengers between the peak and off-peak operation

6.3 Suggestions
6.4 Chapter summary

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Discussion of results
7.2 Contribution of the study
7.3 Future work

REFERENCES

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
VITA
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Whole-body vibration standards (Sylvester, 2009)</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Health effect assessment value in A8 and VDV</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Ride comfort level for public transportation vehicles (Mansfield, 2005)</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Factors that affects ride comfort</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of research gap</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>KL monorail route sections</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Details of trip sequence</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Ride comfort during peak operation</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Ride comfort during off-peak operation</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>ANOVA results for peak operation in standing orientation during downstream trip</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>ANOVA results for peak operation in standing orientation during upstream trip</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>ANOVA results for peak operation in sitting orientation during downstream trip</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>ANOVA results for peak operation in sitting orientation during upstream trip</td>
<td>103</td>
</tr>
<tr>
<td>5.5</td>
<td>ANOVA results for off-peak operation in standing orientation during downstream trip</td>
<td>105</td>
</tr>
<tr>
<td>5.6</td>
<td>ANOVA results for off-peak operation in standing orientation during upstream trip</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>ANOVA results for off-peak operation in sitting orientation during downstream trip</td>
<td>111</td>
</tr>
<tr>
<td>5.8</td>
<td>ANOVA results for off-peak operation in sitting orientation during upstream trip</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scomi KL monorail (Scomi, 2015)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Monorail on a track girder (Lee et al., 2005)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic layout of KL monorail (Prasarana, 2014)</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic drawing of KL monorail (Prasarana, 2014)</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology flowchart</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>KL monorail route</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of experiments in two-car train</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Layout for point of experiments in two-car train</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Human Vibration Meter (HVM-100)</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Whole-body vibration measurement steps</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Above bogie region</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Center of car region</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Accelerometer placement in sitting position</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Accelerometer placement in standing position</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Daily vibration exposure for peak operation</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Daily vibration exposure for off-peak operation</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Health effect diagram for peak operation</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Health effect diagram for off-peak operation</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Motion sickness dose value for peak operation</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage of passengers to vomit for peak operation</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Motion sickness dose value for off-peak operation</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Percentage of passengers to vomit for off-peak operation</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>SEAT value for peak operation</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>SEAT value for off-peak operation</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Acceleration graph for peak operation at bogie 1 during downstream trip</td>
<td>72</td>
</tr>
</tbody>
</table>
4.12 Acceleration graph for peak operation at bogie 1 during upstream trip 72
4.13 Acceleration graph for peak operation at bogie 2 during downstream trip 73
4.14 Acceleration graph for peak operation at bogie 2 during upstream trip 73
4.15 Acceleration graph for peak operation at center of car during downstream trip 74
4.16 Acceleration graph for peak operation at center of car during upstream trip 75
4.17 Acceleration graph for off-peak operation at bogie 1 during downstream trip 75
4.18 Acceleration graph for off-peak operation at bogie 1 during upstream trip 76
4.19 Acceleration graph for off-peak operation at bogie 2 during downstream trip 77
4.20 Acceleration graph for off-peak operation at bogie 2 during upstream trip 77
4.21 Acceleration graph for off-peak operation at the center of car during downstream trip 78
4.22 Acceleration graph for off-peak operation at the center of car during upstream trip 78
4.23 Acceleration graph for peak operation in standing orientation during downstream trip 80
4.24 Acceleration graph for peak operation in standing orientation during upstream trip 80
4.25 Acceleration graph for peak operation in sitting orientation during downstream trip 81
4.26 Acceleration graph for peak operation in sitting orientation during upstream trip 81
4.27 Acceleration graph for off-peak operation in standing orientation during upstream trip 82
4.28 Acceleration graph for off-peak operation in standing orientation during upstream trip 83
4.29 Acceleration graph for off-peak operation in sitting orientation during downstream trip 83
4.30 Acceleration graph for off-peak operation in sitting orientation during upstream trip 84
4.31 Acceleration graph at bogie 1 in standing orientation during downstream trip 85
4.32 Acceleration graph at bogie 1 in standing orientation during upstream trip 85
4.33 Acceleration graph at bogie 1 in sitting orientation during downstream trip 86
4.34 Acceleration graph at bogie 1 in sitting orientation during upstream trip 86
4.35 Acceleration graph at bogie 2 in standing orientation during downstream trip 87
4.36 Acceleration graph at bogie 2 in standing orientation during upstream trip 87
4.37 Acceleration graph at bogie 2 in sitting orientation during downstream trip 88
4.38 Acceleration graph at bogie 2 in sitting orientation during upstream trip 89
4.39 Acceleration graph at center of car cabin in standing orientation during downstream trip 89
4.40 Acceleration graph at center of car in standing orientation during upstream trip 90
4.41 Acceleration graph at center of car in sitting orientation during downstream trip 91
4.42 Acceleration graph at center of car in sitting orientation during upstream trip 91
5.1 Mean plot for peak operation in standing orientation during downstream trip 96
5.2 Mean plot for peak operation in standing orientation during upstream trip 99
5.3 Mean plot for peak operation in sitting orientation during downstream trip 101
5.4 Mean plot for peak operation in sitting orientation during upstream trip 104
5.5 Mean plot for off-peak operation in standing orientation during downstream trip 107
5.6 Mean plot for off-peak operation in standing orientation during upstream trip 109
5.7 Mean plot for off-peak operation in sitting orientation during downstream trip 112
5.8 Mean plot for off-peak operation in sitting orientation during upstream trip 114
5.9 Mean plot for peak operation at bogie 1 during downstream trip 118
5.10 Mean plot for peak operation at bogie 1 during upstream trip 121
5.11 Mean plot for peak operation at bogie 2 during downstream trip 124
5.12 Mean plot for peak operation at bogie 2 during upstream trip 127
5.13 Mean plot for peak operation at center of car during downstream trip 130
5.14 Mean plot for peak operation at center of car during upstream trip 133
5.15 Mean plot for off-peak operation at bogie 1 during downstream trip 137
5.16 Mean plot for off-peak operation at bogie 1 during upstream trip 140
5.17 Mean plot for off-peak operation at bogie 2 during downstream trip 143
5.18 Mean plot for off-peak operation at bogie 2 during upstream trip 146
5.19 Mean plot for off-peak operation at center of car during downstream trip 149
5.20 Mean plot for off-peak operation at center of car during upstream trip 152
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.21</td>
<td>Mean plot for standing orientation above bogie 1 during downstream trip</td>
</tr>
<tr>
<td>5.22</td>
<td>Mean plot for standing orientation above bogie 1 during upstream trip</td>
</tr>
<tr>
<td>5.23</td>
<td>Mean plot for sitting orientation above bogie 1 during downstream trip</td>
</tr>
<tr>
<td>5.24</td>
<td>Mean plot for sitting orientation above bogie 1 during upstream trip</td>
</tr>
<tr>
<td>5.25</td>
<td>Mean plot for standing orientation above bogie 2 during downstream trip</td>
</tr>
<tr>
<td>5.26</td>
<td>Mean plot for standing orientation above bogie 2 during upstream trip</td>
</tr>
<tr>
<td>5.27</td>
<td>Mean plot for sitting orientation above bogie 2 during downstream trip</td>
</tr>
<tr>
<td>5.28</td>
<td>Mean plot for sitting orientation above bogie 2 during upstream trip</td>
</tr>
<tr>
<td>5.29</td>
<td>Mean plot for standing orientation at center of car during downstream trip</td>
</tr>
<tr>
<td>5.30</td>
<td>Mean plot for standing orientation at center of car during upstream trip</td>
</tr>
<tr>
<td>5.31</td>
<td>Mean plot for sitting orientation at center of car during downstream trip</td>
</tr>
<tr>
<td>5.32</td>
<td>Mean plot for sitting orientation at center of car during upstream trip</td>
</tr>
</tbody>
</table>

Page Numbers:
- 5.21: 153
- 5.22: 153
- 5.23: 154
- 5.24: 155
- 5.25: 156
- 5.26: 156
- 5.27: 157
- 5.28: 157
- 5.29: 158
- 5.30: 159
- 5.31: 159
- 5.32: 160
LIST OF ABBREVIATIONS

Amax - Maximum Acceleration
Amp - Peak Acceleration
ANOVA - Analysis of Variance
Arms - Root mean square Acceleration
BB - Bukit Bintang
Bg1SitDs - Bogie 1 Sitting Downstream
Bg1SitUs - Bogie 1 Sitting Upstream
Bg1StdDs - Bogie 1 Standing Downstream
Bg1StdUs - Bogie 1 Standing Upstream
Bg2SitDs - Bogie 2 Sitting Downstream
Bg2SitUs - Bogie 2 Sitting Upstream
Bg2StdDs - Bogie 2 Standing Downstream
Bg2StdUs - Bogie 2 Standing Upstream
Bg1Ds - Bogie 1 Downstream
Bg1Us - Bogie 1 Upstream
Bg2Ds - Bogie 2 Downstream
Bg2Us - Bogie 2 Upstream
CnDs - Center Downstream
CnUs - Center Upstream
BN - Bukit Nanas
Bogie 1 - Front bogie
Bogie 2 - Rear bogie
CF - Crest Factor
CK - Chow Kit
CnSitDs - Center Sitting Downstream
CnSitUs - Center Sitting Upstream
CnStdDs - Center Standing Downstream
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CnStdUs</td>
<td>Center Standing Upstream</td>
</tr>
<tr>
<td>D</td>
<td>Downstream</td>
</tr>
<tr>
<td>eVDV</td>
<td>Estimated Vibration Dose Value</td>
</tr>
<tr>
<td>HT</td>
<td>Hang Tuah</td>
</tr>
<tr>
<td>HVM</td>
<td>Human Vibration Meter</td>
</tr>
<tr>
<td>IB</td>
<td>Imbi</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>IST-test</td>
<td>Independent Sample T-test</td>
</tr>
<tr>
<td>KL</td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>KLMS</td>
<td>Kuala Lumpur Monorail System</td>
</tr>
<tr>
<td>KLS</td>
<td>Kuala Lumpur Sentral</td>
</tr>
<tr>
<td>LBP</td>
<td>Lower Back Pain</td>
</tr>
<tr>
<td>LRT</td>
<td>Light-Rail Transit</td>
</tr>
<tr>
<td>ML</td>
<td>Maharajalela</td>
</tr>
<tr>
<td>MRT</td>
<td>Mass Rapid Transit</td>
</tr>
<tr>
<td>MSDV</td>
<td>Motion Sickness Dose Value</td>
</tr>
<tr>
<td>MT</td>
<td>Medan Tuanku</td>
</tr>
<tr>
<td>r.m.s</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RC</td>
<td>Ride Comfort</td>
</tr>
<tr>
<td>RC</td>
<td>Raja Chulan</td>
</tr>
<tr>
<td>SEAT</td>
<td>Seat Effective Amplitude Transmissibility</td>
</tr>
<tr>
<td>TS</td>
<td>Tun Sumbhatan</td>
</tr>
<tr>
<td>TW</td>
<td>Titiwangsa</td>
</tr>
<tr>
<td>U</td>
<td>Upstream</td>
</tr>
<tr>
<td>VDV</td>
<td>Vibration Dose Value</td>
</tr>
<tr>
<td>WBV</td>
<td>Whole-body Vibration</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

A	Acceleration graphs for peak operation	185
B	Acceleration graphs for off-peak operation	186
C	ANOVA results for peak operation	187
D	ANOVA results for off-peak operation	189
E	Independent Sample T-test results for orientations	191
F	Independent Sample T-test results for operations	192
G	Weighted acceleration calculator	193
H	Official documents for experimental work	194
LIST OF PUBLICATIONS

JOURNAL ARTICLES:

1. Analysis of WBV on standing and seated passengers during off-peak operation in KL monorail
 Khalid Hasnan, Qadir Bakhsh, Aqeel Ahmed, Danish Ali, Ali Raza Jamali

2. Whole Body Vibration exposure on standing and seated passengers during peak operation in KL monorail
 Khalid Hasnan, Qadir Bakhsh, Noor Aqilah, Aqeel Ahmed, Danish Ali, Ali Raza Jamali
 Advanced Science Letters. 2018, SCOPUS indexed (Accepted)

3. Measurement of whole-body vibration for standing passenger at the center of car cabin in monorail during peak operation
 Khalid Hasnan, Qadir Bakhsh, Aftab Ahmed, Ali Raza Jamali
 International Journal of Mechanical Engineering and Robotics Research 2018, SCOPUS indexed (Accepted)

CONFERENCE PRESENTATION:

1. International conference on Mechanical Engineering, Material Science and Civil Engineering (ICMEMSCE-2017)
 December 15-16, 2017 at Kuala Lumpur Malaysia
 Organized by: X-Academy Shanghai China

2. 2018 Symposium on Islamic, Science and Technology (SISTECH-2018)
 January 22-24, 2018 at Kuala Lumpur Malaysia
 Organized by: Malaysia Technical Scientist Association (MALTESAS)
CHAPTER 1

INTRODUCTION

This chapter explains the background of study briefly, followed by problem statement and aim of the study. Based on the problem statement, the objective of the study was designed to overcome it. The scope of this study and significance are also discussed in this chapter. At the last, the layout of this thesis is described chapter by chapter.

1.1 Background

Many people face the whole-body vibration (WBV) in their occupational life, specially the drivers and passengers of various vehicles, such as trucks, cars, trains and buses (Demic, Lukic & Milic, 2002). Whenever, there is vibration transmission to whole body of human by means of the vibration source matting with the bottom back or feet of human is always considered as WBV (Sylvester, 2009).

When the drivers or passengers are seated on a fixed seat, the acceleration from the source is transmitted through seat to their body (Falou et al., 2003). Among longitudinal and lateral vibrations, the vertical vibrations (in z-axis directions) are mainly affects the human body in case of WBV. These vertical vibrations are transmitted from the seat or floor to the buttocks and back of the persons along the vertebral axis through the seat pan and back (Cann, Salmoni & Eger, 2004). The continuous or long-term exposure to high amplitude WBV is strongly connected with the successive growth of lower back pain in human body (Limerick & Lynas, 2016).

Exposure to WBV causes a complex distribution of oscillatory motions and forces within the body. There can be large variations between subjects with respect to
biological effects. WBV may cause sensations (e.g. discomfort or annoyance), influences human performance capability or present a health and safety risk (Pathological damage or Physiological change). The presence of oscillatory force with little motion may cause similar effects (ISO, 1997).

Usually, in vehicles the passengers while riding on uneven surfaces and in case of machines, the operators always exposed to WBV. Also, the human body posture plays an important role in the magnitude of vibration transmission to their body (Ismail et al., 2010). In whole-body vibration the human body experienced with complex distribution of oscillatory waves and forces. It usually affects the human performance capability by discomfort or annoyance, influences a health and safety risk (ISO, 1997).

WBV can be described when the environment is undergoing motion and affect the whole portion of the body which is not local to any particular point of contact. It occurs when the body is supported on a vibrating surface. There are three principal possibilities: sitting on a vibrating seat, standing on a vibrating floor, or lying on a vibrating bed (Griffin, 1990). According to Sayed et al., (2012) it was clear that the metro passengers are exposed to serious magnitudes of WBV. The WBV gained in human body is increased when the duration of vibration exposure and the total metro trips experienced by the subject enlarged. The exceeding of high vibration exposures over the allowable limits to the passengers, would cause many side effects that include lower back pain (LBP), headache, shoulder pain and emotional instability (Mcphee, Foster, & Long, 2001; ISO, 1997).

The exposure of vibration to human body has many sources: in all kind of vehicles, buildings, and from the operation of industrial machines (Morioka & Griffin, 2000). In case of various transportations, the contact of human body with the vibrating surfaces usually caused the transmission of whole-body vibration such as; seat for driver and passenger or vehicle floor or body (Park et al., 2013). The human body posture has been found to be predominant and it influences the surface of contact with the vibrating medium (Harazin & Grzesik, 1998).

Demic et al., (2002) states that the effects on humans of exposure to vibration at best may be discomfort and interference with activities; at worst may be injury or disease. Vertical acceleration called z axis vibration is the most common vibration in railway vehicles, which people are exposed (Goodall & Mei, 2006). An example of this is the vibration experienced when driving over potholes or when trotting on a horse. There is also lateral acceleration called y axis vibration, and longitudinal
acceleration called x axis vibration are commonly experienced on rail vehicles. When the duration and dose of WBV increases in all occupational environments, usually it has directly impact on the increase in risk for injury (Yang & Yin, 2014).

1.2 Problem statement

The monorail considered as noiseless and more comfortable ride than the other trains or steel wheeled trains (Kennedy, 2010), because of rubber tires and elevated track interaction. This vibration transmission from source to the passengers would have many effects on passengers. As humans are very sensitive to shaking, shocks and sudden jerks and find that unpleasant. This train vibration always results the discomfort in ride. In one study Demic et al., (2002) described that the train passengers are facing some problems such as uncomfortable in ride, which is caused by WBV. The amount of discomfort experienced varies with the frequency of the acceleration. Therefore, it is necessary to weigh the accelerations for a compound motion together and form a single number that used to compare the level of discomfort. Likewise, Kim et al., (2009) also examined that vibration is generally considered to be the primary factor that influence ride comfort of passengers. Boyenzi & Betta (1994) investigated that there is always a complaint among the passengers of different vehicles about the development of musculoskeletal due to the excessive exposure to WBV due to uncooperative working postures.

Furthermore, the study described that the different level of vibration also affects the ride performance for passengers at different locations of railway vehicle. WBV tend to affect the human body which is mainly in vertical vibrations. These vibrations are transmitted to the buttocks and back of the occupant along the vertebral axis via the base and back of the seat (Falou et al., 2003). The WBV usually cause health and safety risk such as; ride discomfort, badly disturb their performance, lower back pain, shoulder pain, nausea and other health conditions (Mcphee, Foster & Long, 2001; ISO, 1997). The ride quality of monorail is affected by a variety of factors, including vibrations, noise, seat design, and centrifugal forces while curving. When the train is braking and cornering, the body produces a booming resonance, and the humans normally experience an uncomfortable ride (Kim et al., 2009).
REFERENCES

Fujita, T., Fukao, T., Kinoshita, T., & Itagaki, N. (2013). *Semi-active suspension improving both ride comfort and handling feel*. IFAC Proceedings Volumes (IFAC-PapersOnline), 7, IFAC.

Mayton, A. G., Jobes, C. C., & Gallagher, S. (2014). Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and

Figure A.1 Acceleration graph at bogie 1 during standing downstream trip