THE EFFECT OF BITUMEN RHEOLOGY TO THE PERMANENT DEFORMATION OF AN ASPHALT CONCRETE MIXTURE

MAHVIDAVANTI MUHAMAD TARMIDI

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN
THE EFFECT OF BITUMEN RHEOLOGY TO
THE PERMANENT DEFORMATION OF AN ASPHALT CONCRETE MIXTURE

MAHVIDAYANTI MUHAMAD TARMIDI

This dissertation is submitted as a fulfillment of
the requirements for the award of the degree of
Master in Civil Engineering

Faculty of Civil and Environmental Engineering
Kolej Universiti Teknologi Tun Hussein Onn

April, 2005
This dissertation is submitted
in fulfillment the requirement for the award of
Master Degree of Civil Engineering

Faculty of Civil and Environmental Engineering
Kolej Universiti Teknologi Tun Hussien Onn

APRIL, 2005
This work is dedicated to
my beloved husband, ROHMANI HI. TASARI,
Also to my kids, ALIF RAHIMI and ADHAM RAFIQ,
For the love, patience, understanding and invaluable support.............
ACKNOWLEDGEMENT

Utmost gratitude to Allah Almighty for giving me the will and strength to undertake and complete this study.

I wish to express my gratitude to all the peoples that made this project possible. I would like to express my utmost and deepest appreciation to my parents, En. Muhamad Tarmidi bin Ishak and Pn. Khamsiah bt. Samiuni, also my mother in-law, Pn. Hjh. Rukiah bt. Hj. Md. Noor, for their supports and encouragement throughout this endeavor.

Special thanks are extended to my supervisor, Associate Professor Dr. Kemas Ahmad Zamhari, for his support, guidance, experience and knowledge throughout this project and my studies at Kolej Universiti Teknologi Tun Hussein Onn. The successful completion of this dissertation along with other requirements for the Master in Civil Engineering has been realized by the tremendous support and encouragement by him.

I would also like to express my appreciation to the head of Highway Laboratory, En. Ahmad Kamal Ariffin Abdul Rahim, and all the technicians involved, Pn. Zamra and En. Azuan, for their supports and contributions to the research effort.

Finally, I am very thankful to Aida Muhamad, Norsafarina Ngah Jidin, Nor Suhaila Mohamed Sunar and Mohd Niizar Abdurrahman, who gave me invaluable advise and support throughout my research work, as well as the time spent together.
Bitumen which functions as a binder in asphalt concrete mixture is also a visco-elastic and thermoplastic material. The characteristics are also influenced by the temperature. It is because in hot condition or at high temperature, bitumen acts like a viscous liquid. In cold climate or at low temperature, bitumen behaves like an elastic solid. Even though bitumen is an elastic solid at low temperatures, it may become too brittle and crack when excessively loaded. However, the characteristic of an asphalt concrete are influenced by the rheology of bitumen which having two important properties; resistance to permanent deformation and fatigue. In this study, the most important thing to measure is the rheology of two different types of bitumen. The measurement was done using the Dynamic Shear Rheometer to obtain the visco-elastic properties of bitumen. The bitumen was then used in preparing an asphalt concrete mixture in order to test the rutting or permanent deformation using the Static Creep test. An analysis was done to verify the correlation between the rheology of two different types of bitumen and the rate of permanent deformation of the asphalt concrete mixture. Results obtained showed that both bitumens having a different rheology. Moreover, rutting parameter, G*/sin δ could predict the different of creep performance. However, bitumen with identical value of G*/sin δ at a different temperature would not necessarily produce mixture with the same creep compliance under the related temperature. Therefore, for further study it is recommended to focus on the load effect to the creep compliance.
Bitumen yang berfungsi sebagai bahan pengikat di dalam campuran konkrit asfalt juga merupakan suatu bahan yang visco-elastic dan thermoplastic. Sifat-sifatnya juga banyak dipengaruhi oleh suhu. Ini kerana dalam keadaan suhu yang tinggi atau cuaca panas, bitumen bertindak seperti cecair yang likat. Pada cuaca yang sejuk atau pada suhu yang rendah pula, bitumen akan menjadi bahan anjal yang padat. Walaupun bitumen adalah merupakan bahan anjal yang padat pada suhu rendah, ia boleh menjadi terlalu rapuh dan retak apabila dikenakan beban yang banyak atau melampau. Walau bagaimanapun, ciri-ciri campuran konkrit asfalt lebih dipengaruhi oleh reologi (sifat perubahan bentuk bahan akibat tegasan) bitumen yang mana mempunyai dua ciri penting iaitu ketahanan terhadap perubahan bentuk yang kekal akibat kesan roda atau tayar kenderaan dan ciri lesunya. Di dalam projek ini, perkara penting yang diukur adalah reologi daripada dua jenis bitumen yang berbeza. Pengukuran dilakukan menggunakan peralatan Dynamic Shear Rheometer untuk mendapatkan ciri-ciri anjal dan likat bitumen terbabit. Selanjutnya, bitumen tersebut digunakan untuk membuat sampel campuran konkrit asfalt untuk menguji ciri-ciri ketahanannya terhadap perubahan bentuk yang kekal menggunakan uji kajian Static Creep. Suatu analisis telah dibuat untuk menjelaskan hubungkait antara reologi bitumen dan ciri-ciri perubahan bentuk yang kekal campuran konkrit asfalt tersebut. Keputusan daripada uji kajian yang telah dibuat menunjukkan bahawa kedua-dua jenis bitumen mempunyai reologi yang berbeza. Seterusnya, parameter lekukan turapan, $G*/\sin \delta$ dapat menggambarkan perubahan dalam creep performance. Walau bagaimanapun, bitumen yang mempunyai nilai $G*/\sin \delta$ yang sama pada suhu yang berbeza belum tentu dapat menghasilkan campuran konkrit dengan nilai creep performance yang sama. Maka, untuk kajian yang akan datang adalah dicadangkan agar kajian kesan dari pada beban terhadap creep performance dapat dilakukan.
| CONTENTS |
|-----------------|-------|
| DECLARATION | ii |
| DEDICATION | iii |
| ACKNOWLEDGEMENTS | iv |
| ABSTRACT | v |
| ABSTRAK | vi |
| TABLE OF CONTENTS| vii |
| LIST OF TABLES | xii |
| LIST OF FIGURES | xiv |
| LIST OF PHOTOGRAPHS | xvi |
| LIST OF ABBREVIATIONS AND SYMBOLS | xvii |
| LIST OF APPENDICES | xviii |

I INTRODUCTION 1

1.1 Introduction 1
1.2 Statement of Problem 5
1.3 Objective of Study 6
1.4 Scope of Study 6
LITERATURE REVIEW

2.1 Origins of Bitumen

2.2 Engineering Properties of Bitumen
 2.2.1 Stiffness
 2.2.2 Tensile Strength
 2.2.3 Fatigue

2.3 Bitumen Specifications
 2.3.1 Rolling Thin Film Oven
 2.3.2 Pressure Aging Vessel
 2.3.3 Dynamic Shear Rheometer
 2.3.4 Rotational Viscometer
 2.3.5 Bending Beam Rheometer
 2.3.6 Direct Tension Tester

2.4 Asphalt Concrete Mixture
 2.4.1 Creep Behavior of Asphalt Concrete Mixes
 2.4.2 Various Stages of Creep
 2.4.3 Asphalt Creep Test
 2.4.4 Measurement of Creep Using Static Creep Test Method

2.5 Permanent Deformation of Flexible Pavement

2.6 Factors Influencing Rutting
 2.6.1 Binder Content
 2.6.2 Air Void Content
 2.6.3 Aggregate Type and Quantity
 2.6.4 Temperature

2.7 Previous Studies
 2.7.1 Performance of Bituminous Mixes at high Service Temperature: Permanent Deformation
 2.7.2 The Effects of Laboratory Asphalt Concrete Specimen On Permanent Deformation
2.7.3 Criteria to Evaluate Uniaxial Creep Data and Asphalt Concrete Permanent Deformation Potential 45
2.7.4 The Visco-Elastic and Permanent Deformation Properties of New South Wales Asphalt 46
2.7.5 Rutting Response of Hot-Mix Asphalt to Generalized Dynamic Shear Moduli of Asphalt Binder 49
2.7.6 Evaluation of Different Parameters for Superpave High Temperature Binder Specification Based on Rutting Performance in the Accelerated Loading Facility (ALF) at Federal Highway Administration (FHWA) 50
2.7.7 Permanent Deformation Properties of Asphalt Mixes 51
2.7.8 Design of Dense Bituminous Surfacings of Asphalt Mixtures 52
2.8 The Advantages of Dynamic Shear Rheometer Compared to Marshall Method 53

III RESEARCH METHODOLOGY 54

3.1 Introduction 54
3.2 Research Design and Procedure 54
3.3 Materials / Sample 58
3.4 Laboratory Work and Instrumentation Use 58
3.5 Testing for Materials 59
3.5.1 Aggregate 59
3.5.1.1 Sieve Analysis 60
3.5.2 Bitumen 61
3.5.2.1 Penetration Test 61
3.5.2.2 Softening Point Test 62
3.5.2.3 Viscosity Test 64
3.5.2.4 Rolling Thin Film Oven Test 65
3.5.2.5 Dynamic Shear Rheometer Test 67
3.5.3 Asphalt Concrete Mixture 68
3.5.3.1 Static Creep Test 70

IV RESULT AND DATA ANALYSIS 73

4.1 Introduction 73
4.2 Sieve Analysis Result 73
4.3 Penetration Test Result 74
4.4 Softening Point Test Result 75
4.5 Viscosity Test Result 76
4.6 Rolling Thin Film Oven Test Result 78
4.7 Dynamic Shear Rheometer Test Result 78
4.8 Static Creep Test Result 80

V CONCLUSION AND RECOMMENDATION 86

5.1 Introduction 86
5.2 Conclusion 86
5.3 Recommendation 87
REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Superpave Binder Test Equipment</td>
<td>14</td>
</tr>
<tr>
<td>2.1a</td>
<td>Geometric Requirements for Static Creep Specimen</td>
<td>29</td>
</tr>
<tr>
<td>2.1b</td>
<td>Effect on Static Creep</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Relative Deformation of Mixes at 40C, Effect of Bitumen Penetration</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Relative Deformation of Mixes at 40C, Effect of Bitumen Penetration Index (PI)</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Average Permanent Deformation Results: Full Experiment</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Average Permanent Deformation Results: Conventional Asphalts</td>
<td>42</td>
</tr>
<tr>
<td>2.6</td>
<td>Average Permanent Deformation Results: Asphalt Rubber</td>
<td>43</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.7</td>
<td>Constants in the Dirichlet Series Representation On the Visco-Elastic Compliance</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>The Advantages of Dynamic Shear Rheometer Compared to Marshall</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>List of Laboratory Test for Materials</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Gradation Limit for ACW14</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Penetration Test Result</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Softening Point Test Result</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Static Creep Test Result</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Creep Compliance with regard to Fresh Bitumen Requirement for G*/sin δ</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Creep Compliance with regard to RTFOT Bitumen Requirement for G*/sin δ</td>
<td>83</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Propotion of Hot-Mix Asphalt Project Designed Using the Superpave System</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Fatigue ‘strength’ as a function of stiffness modulus</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Visco-Elastic Behavior</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Stages of Creep</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical Creep Stress and Strain Relationships</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Rut-depth as a function of in-situ Penetration Index (PI) measured on the Colnbrook Bypass after 8 years’ service</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Permanent strain per unit stress: Creep data – mean value</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.7</td>
<td>Visco-elastic strain per unit stress: Creep data – coefficient of variation</td>
<td>48</td>
</tr>
<tr>
<td>2.8</td>
<td>Permanent strain per unit stress: Creep data – coefficient of variation</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic Diagrams on the Research Design and Procedure</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Viscosity vs. Temperature for Bitumen Penetration Grade 80</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Viscosity vs. Temperature for Rubber Modified Bitumen</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>$(G^*/\sin \delta)$ vs. Temperature for Original Binder</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>$(G^*/\sin \delta)$ vs. Temperature for RTFOT Binder</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Histogram with regard to Fresh Bitumen Requirement for $G^*/\sin \delta$</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Histogram with regard to RTFO Bitumen Requirement for $G^*/\sin \delta$</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Creep Compliance vs. Temperature for Creep Test</td>
<td>85</td>
</tr>
<tr>
<td>PHOTOGRAPH NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Sieve Analysis Apparatus</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Penetration Test Apparatus</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Softening Point Apparatus</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Rotational Viscometer</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Rolling Thin Film Oven Test Apparatus</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Dynamic Shear Rheometer</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Servopac Gyratory Compactor</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>Static Creep Test Apparatus with the Specimen mounted in the creep jig</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>Samples wrapped with aluminium foil to avoid heat loss</td>
<td>71</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>phase angle of asphalt binder</td>
<td></td>
</tr>
<tr>
<td>G^*</td>
<td>complex shear modulus of asphalt binder</td>
<td></td>
</tr>
<tr>
<td>ε_f</td>
<td>failure strain</td>
<td></td>
</tr>
<tr>
<td>ΔL</td>
<td>change in length</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>stress</td>
<td></td>
</tr>
<tr>
<td>S_{mix}</td>
<td>mix stiffness</td>
<td></td>
</tr>
<tr>
<td>S_{bit}</td>
<td>bitumen stiffness</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>American Standard for Testing Material</td>
<td></td>
</tr>
<tr>
<td>BTDC</td>
<td>Bitumen Test Data Chart</td>
<td></td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analysis</td>
<td></td>
</tr>
<tr>
<td>DSR</td>
<td>Dynamic Shear Rheometer</td>
<td></td>
</tr>
<tr>
<td>HMA</td>
<td>Hot Mix Asphalt</td>
<td></td>
</tr>
<tr>
<td>OBC</td>
<td>Optimum Bitumen Content</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Penetration Index</td>
<td></td>
</tr>
<tr>
<td>RMB</td>
<td>Rubber Modified Binder</td>
<td></td>
</tr>
<tr>
<td>RTFO</td>
<td>Rolling Thin Film Oven</td>
<td></td>
</tr>
<tr>
<td>SHRP</td>
<td>Strategic Highway Research Program</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bitumen Test Data Chart (BTDC)</td>
<td>96</td>
</tr>
<tr>
<td>B</td>
<td>Nomograph</td>
<td>97</td>
</tr>
<tr>
<td>C</td>
<td>Result of Dynamic Shear Rheometer Test</td>
<td>98</td>
</tr>
<tr>
<td>D</td>
<td>Result of Static Creep Test</td>
<td>100</td>
</tr>
</tbody>
</table>
CHAPTER I

1.1 Introduction

Pavement design is essentially a structural evaluation process, ensuring that the traffic loads are so distributed that the stresses and strains developed at all levels in the pavement and the subgrade are within the capabilities of the materials at those levels. The objective of pavement design is to produce an engineering structure that will distribute traffic loads efficiently, whilst minimizing the whole-life cost of the pavement, i.e. both initial construction and maintenance costs. It involves the selection of materials for the different layers and the calculation of the required thickness. The load-carrying capacity of a pavement is a function of both the thickness of the material and its stiffness.

The mechanical properties of the materials comprising the layers in a pavement are important for designing the structure. Climatic conditions influence the performance of the whole pavement. Moisture affects the subgrade, sub-base or unbound base and the temperature affects the bitumen-bound materials; therefore it is essential that design methods take account of climatic conditions.

It is generally accepted that a well-designed, well-constructed, modern trunk road pavement should at least meet the following basic performance criteria:
a. The finished carriageway should have good skid resistance and provide the motorist with a comfortable and safe ride,
b. The pavement should be able to carry its design traffic without excessive deformation
c. Its component layers should not crack as a result of the stresses and strains imposed on them by heavy commercial vehicles or climatic conditions
d. A pavement's foundation (including its subbase and any capping layer that might be required to protect the subgrade) should have enough load-spreading capability for it to provide a satisfactory platform for construction vehicles whilst the road is being built.

Bituminous pavement is one of the most popular methods used in the construction of new road pavements. This is because some advantages claimed for bituminous pavements generally include the following, when compared with concrete pavements (O'Flaherty, 1967):

a. In new major roads, bituminous surfacings generally provide a better riding quality when opened to traffic, especially if the transverse joints in the concrete slab are closely spaced and not well formed.
b. Bituminous surfacings are traditionally considered to be quieter and are preferred for use in locales where noise is deemed a problem. (However, a low noise concrete paving has now been developed that gives a much quieter ride)
c. Bituminous pavements can be opened to traffic as soon as compaction is completed and the surfacings have cooled to the ambient temperature, whereas concrete ones formed from conventional mixes cannot be opened until they have gained sufficient strength. (However, it should be noted that 'fast-track' process has now been developed which uses rapid-hardening cement in association with high-temperature curing to allow concrete pavements to be opened to traffic within 12 hours of their construction).
Increased traffic factors such as heavier loads, higher traffic volume and higher tire pressure demand higher performance pavements. Truck loading is increasing worldwide, resulting in more permanent deformation of asphalt concrete pavements. It is therefore necessary to ensure pavements can withstand this loading without rutting, which requires improvements to mix design and analyses. The effects of different tyre types were found to have significant effect on the development of rutting.

A higher performance pavement requires bitumen that is less susceptible to high temperature rutting or low temperature cracking and has excellent bonding to stone aggregates. The chemical composition of the bitumen has a significant effect on its visco-elastic properties and hence on its performance as road paving materials in asphalt concrete mixture.

With increasing traffic loadings and more demanding performance requirements, the need to be able to predict long-term behavior is essential. Performance on the road depends on many factors including the design, application and the quality of the individual components. The most important pavement materials are bitumen and tar, cement and lime, soil and rock, gravel and slag aggregates. Although bitumen is, in terms of its volume, a relatively minor component of a bituminous mix, it has a crucial role acting as a durable binder and conferring visco-elastic properties to the mix. Satisfactory performance of bitumen on the road can be ensured if four properties are controlled. Those properties are rheology, cohesion, adhesion and durability.

Highway engineers recognized that improved durability would be achieved using dense, impermeable mixes. The gradual increase in the use of BS 594 rolled asphalt for trunk roads and the development of dense bitumen macadam, which first appeared in the 1961 edition of BS 1621, reflected this awareness. Since the mid sixties both the volume and axle weight of vehicles on the roads in the United Kingdom have increased dramatically, and in the early seventies it was realized that
recipe mixes, which had hitherto given long and satisfactory performance, were
deforming under the increasing numbers of heavier vehicles.

Therefore, bituminous mixes have to fulfill a wide range of requirements for
today’s traffic, in particular the ability to:

1. resist permanent deformation
2. resist fatigue cracking
3. be workable during laying, enabling the material to be satisfactorily
 compacted with the available equipment
4. be impermeable, to protect the lower layers of the road from water
5. be durable, resisting abrasion by traffic and the effects of air and water
6. contribute to the strength of the pavement structure
7. be easily maintained and most importantly, must be cost-effective.

In addition to the above, wearing course materials must also fulfill the
following tyre/pavement interaction requirements:

1. provide a skid-resistant surface under all weather conditions
2. have an acceptable level of rolling resistance
3. provide a surface which under trafficking, produces an acceptable
4. provide a surface of acceptable riding quality

In 1987, Congress established the Strategic Highway Research Program
(SHRP) to sponsor several coordinated research projects that were directed at
improving the performance and durability of roads in United States. From October
1987 through March 1993, a $50 million Strategic Highway Research Program
(SHRP) project was conducted to develop new ways to specify, test and design
asphalt paving materials. The results of this research effort are collectively referred to
as ‘Superpave’ (Kennedy et. al., 1994). The percentages of hot-mix asphalt projects
designed using the Superpave system over the past four paving seasons are shown in
Figure 1.1 below. From 1996 to 1999, the percent of projects designed using the
Superpave system increased from one percent (1%) to 41 percent (41%).
Though the use of Superpave mix design procedures are becoming more and more common, it has always been felt that there was a need for a strength test to validate the volumetric mix design procedure. A good strength test would serve to calm the fears of concerned agencies and contractors. The static creep test is one such test that could be used to validate the Superpave volumetric mix design procedures.

1.2 Statement of Problem

The performance of bitumen-bound mixes in practice is significantly influenced by the rheological (or mechanical) properties and to a lesser extent the chemical constitution of the bitumen. The latter is particularly important at the road surface because the constitution of the bitumen influences the rate of oxidation of thereby how rapidly the bitumen is eroded by traffic. These factors are, in turn, influenced by changes due to the effect of air, temperature and water on the bitumen. There are, of course, many factors influencing behavior, including the nature of the aggregate, mix composition, bitumen content (ie bitumen film thickness), degree of compaction, etc, all of which influence long term durability.
REFERENCES

1. Asphalt Institute, “Performance Graded Asphalt Binder Specification and Testing”. Superpave Series No. 1 (SP-1), USA.

Softening point (ASTM), °C

Temperature, °C

Penetration, dmm

- Ideal compaction viscosity
- Poor compaction viscosity
- Poor drying of the aggregate
- Excessive hardening of the bitumen
- Bitumen drainage

Mix too weakable

Ideal mixing viscosity

Vegetation

High mixing viscosity

Mix too weakable

Poor compaction viscosity

Draw a line between the softening point (line 'A') and penetration (line 'B') values. The intercept on line 'C' is the PI of the bitumen.
Company: KUITTHO
Operator: KUITTHO
Date/Time: 17.01.2005 / 14:51:35 PM
Substance: RTFO PG64
Sample no: 3
Description: RTFO PG64 Petronas Binder
Density: 1.020 kg/m³

Measure device: RS1
Temperature device: X
Sensor: PP25
A-factor: 325900.000 Pa/Nm
M-factor: 12.498 (1/s)/(rad/s)
Gap: 1.000 mm

ROLLING THIN FILM OVEN PG64

\[G = f(t_{\text{seg}}) \]
\[G' = f(t_{\text{seg}}) \]
\[G'' = f(t_{\text{seg}}) \]
\[\eta^* = f(t_{\text{seg}}) \]

SHRP: Condition met: \(f = 1.592 \text{ Hz, } |G^*| / \sin (\phi) \cdot m = 2210 \text{ Pa} \)
\(T = 63.50 \degree C \)

Filename: C:\Program Files\RheoWin\JOBS\RTFO PG64.rwi
\[\begin{align*}
G' &= f(t_{\text{seg}}) \\
G'' &= f(t_{\text{seg}}) \\
|\gamma'| &= f(t_{\text{seg}})
\end{align*} \]
F0 PG64 PetronasBinderTest3.yanti
- t = f (t)

\begin{array}{c}
\text{\textbf{F0 PG64 PetronasBinderTest3.yanti}} \\
\text{- t = f (t)}
\end{array}
<table>
<thead>
<tr>
<th>t [s]</th>
<th>t seq [s]</th>
<th>τ [Pa]</th>
<th>η [1/s]</th>
<th>T [℃]</th>
</tr>
</thead>
<tbody>
<tr>
<td>513.8</td>
<td>12.07</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>516.7</td>
<td>14.94</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>531.0</td>
<td>29.27</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>542.4</td>
<td>40.69</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>568.7</td>
<td>54.99</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>571.0</td>
<td>69.27</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>582.4</td>
<td>80.68</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>596.7</td>
<td>94.96</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>611.0</td>
<td>109.3</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>622.4</td>
<td>120.7</td>
<td>219.7</td>
<td>63.5</td>
<td></td>
</tr>
</tbody>
</table>
Date and time: Thursday, March 24, 2005, at 9:24 PM

Timer (hh:mm:ss): 1:00:00
Timer (seconds): 3600

Skin temperature (°C): 29.4
Core temperature (°C): 29.4

Load (kN) Stress (kPa) Contact 0.139 17.6
Axial 0.185 23.5
Deviator 0.047 6.0
Ave. deviator 1.196 152.4
Ave. axial 0.3303 3303
Ave. radial 0.0003 6

Creep Modulus (MPa): 46.14
Creep compliance (1/MPa): 0.02167
Flow time: 2144

Deviation time

Ave. axial: 0.3303 3303
Ave. radial: 0.0003 6

Regression range (sec): 10 to 3600
Calculations based on: Ave. Axial

Test Temperature: 54°C

Notes/comments: Static Creep Test for Rubber Modified Sample 1
US: NCHRP Appendix C, Static Creep/Flow Time

Operator: yanti

yanti 3:55:21 PM
UTM_52 V2.01 Static Creep Test
Specimen Information

Identification: ACW14
Dimensions
- Diameter (mm): Point 1: 100.01, Point 2: 99.81, Point 3: 100.01, Point 4: 100.01, Point 5: 100.01, Point 6: 100.01
- Height (mm): 69.29

Comments/Properties:
- Average: 99.9433; 69.29667
- Sid Dev.: 0.04041452
- Core/Sample Number: Rubber1
- Cross-Sectional Area: 7845.023
- Volume: 543638.1

Load Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Linearised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial force</td>
<td>0.03923</td>
<td>kN</td>
<td>No</td>
</tr>
<tr>
<td>Axial static</td>
<td>1.216</td>
<td>kPa</td>
<td>Yes</td>
</tr>
<tr>
<td>Confining</td>
<td>0</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Calibration Information

<table>
<thead>
<tr>
<th>Channel Description</th>
<th>Filename</th>
<th>Transducer Description</th>
<th>Span</th>
<th>Units</th>
<th>Date</th>
<th>Linearised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Force</td>
<td>UTMCAL03.CAR</td>
<td>FBC Load cell STC2000(663) SN.016937</td>
<td>12</td>
<td>kN</td>
<td>29/05/01</td>
<td>No</td>
</tr>
<tr>
<td>Actuator LVDT #1</td>
<td>UTMCAL04.CAR</td>
<td>FBC Displacement AC15 SN.032-O5</td>
<td>30</td>
<td>mm</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
<tr>
<td>Axial LVDT #2</td>
<td>UTMCAL10.CAR</td>
<td>Axial LVDT(661) SN.29548</td>
<td>5</td>
<td>mm</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
<tr>
<td>Radial LVDT #1</td>
<td>UTMCAL11.CAR</td>
<td>Axial LVDT(661) SN.29504</td>
<td>5</td>
<td>mm</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
<tr>
<td>Radial LVDT #2</td>
<td>UTMCAL11.CAR</td>
<td>FBC Displacement AC15 SN.032-O5</td>
<td>30</td>
<td>mm</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
<tr>
<td>Temperature Probe</td>
<td>UTMCAL01.CAR</td>
<td>Core temperature PT100 SN.337</td>
<td>100</td>
<td>Deg.C</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
<tr>
<td>Confining Pressure</td>
<td>UTMCAL02.CAR</td>
<td>Skin temperature PT100 SN.338</td>
<td>100</td>
<td>Deg.C</td>
<td>29/05/01</td>
<td>Yes</td>
</tr>
</tbody>
</table>