HYDROTHERMALLY EXTRACTED NANOHYDROXYAPATITE FROM BOVINE BONE AS BIOCERAMIC AND BIOFILLER IN BIONANOCOMPOSITE

NAZIA BANO

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Science

Faculty of Applied Sciences and Technology
Universiti Tun Hussein Onn Malaysia

APRIL, 2019
DEDICATION

To my supportive and loving parents (Mr. and Mrs. Muhammad Aslam Sandhu) whose prayer and affection are the source of strength and sign of success for my bright future. They always encourage me to get the highest goal of my life. Their everlasting love, guidance and encouraging passion will remain with me Insha’Allah till my last breath.
ACKNOWLEDGEMENT

All praises to Almighty Allah, Who induced the man with knowledge, intelligence, and mind to think. Peace and blessings of Allah Almighty be upon the Holy Prophet, Hazrat Muhammad (PBUH) who exhorted his followers to seek knowledge from cradle to grave. It is a privilege to express my profound sense of cordial gratitude and genuine appreciation to all the people who abetted me on this journey, though it would be impossible to name them all.

First, I would like to sincerely thank my distinguished, highly learned, experienced and worthy supervisor Dr. Suzi Salwah Binti Jikan, Faculty of Applied Sciences and Technology (FAST), Universiti Tun Hussein Onn Malaysia UTHM. Her keen interest, scholarly guidance and encouragement were a great help throughout the course of this research work. I feel prodigious pleasure in articulating my sincere gratitude and most profound thanks to the most respected, honorable, co-supervisor, Assoc. Prof. Dr. Hatijah Binti Basri, FAST, UTHM, for her valuable suggestions and time. I would also like to express my gratitude to my co-supervisor Dr. Sharifah Adzila Binti Syed Abu Bakar, Department of Materials Engineering and Design, Faculty of Mechanical and Manufacturing Engineering, UTHM, for her understanding, support and generosity in sharing her proficiency.

A lot of prayers for my husband Muhammad Saeed Shahbaz, who has been very helping and sincere to me. I will always remember the nice cooperation of him during this long journey. Only God can give him a reward for what he has done for me. All my family members, my brothers and sister are always a source of inspiration for me. I am thankful to them for their full support, encouragement unwavering belief and sincere prayers for my success. I will always love the time spent with seniors, juniors and my friends in UTHM as sweet memories never fade away.
ABSTRACT

Bones have an extraordinary capacity to restore and regenerate in case of minor injury. However, major injuries need orthopedic surgeries that required bone implant biomaterials. In this study, n-HAP powder was extracted from bovine bone by hydrothermal and calcined at different calcination temperatures (600-1100°C) without the use of solvents. The n-HAP powders produced were used to fabricate two types of biomaterials (HAP bioceramics and PLA/n-HAP bionanocomposite). The raw-HAP and calcined n-HAP powder samples were compacted into green bodies and were sintered at various temperatures (1000-1400°C) to produce HAP bioceramics. The best calcined n-HAP was mixed with PLA by melt mixing and injection moulding to fabricate PLA/n-HAP bionanocomposite. Characterizations of the n-HAP powder, n-HAP bioceramics and PLA/n-HAP bionanocomposite samples were done by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transforms infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy-dispersive x-ray spectroscopy (EDX), X-ray fluorescence (XRF) spectroscopy, universal testing machine (UTM) and melt flow index (MFI) analyses. TGA data revealed that n-HAP was thermally stable at 1300°C. The extracted n-HAP powder was highly crystalline and crystallite size was in the range of 10-83 nm as confirmed by XRD. Density and hardness of the n-HAP bioceramics increased as sintering temperature increased and showing maximum values at a temperature of 1400°C. The results of PLA/n-HAP bionanocomposite revealed that the higher n-HAP loaded (at 5wt%), the lower the tensile strength of bionanocomposite due to poor interfacial adhesion. The interfacial adhesion was improved by loading of 1.0 wt% maleic anhydride (MAH) as a compatibilizer. The biocompatibility of bionanocomposite was evaluated in simulated body fluids (SBF). The results showed that apatite layers were grown on the surfaces of both biomaterials. Therefore, both biomaterials formulated shall be promising medical biomaterials for orthopedic applications.
ABSTRAK

Tulang memiliki keupayaan pemulihan serta pembentukan semula yang luar biasa bagi kes kecederaan kecil. Namun, bagi kecederaan serius, pembedahan ortopedik melibatkan biobahan implan tulang adalah diperlukan. Dalam kajian ini, n-HAP diekstrak dari tulang lembu pada pelbagai suhu kalsin (600-1100°C) menerusi kaedah hidroterm dan pengkalsinan, tanpa menggunakan sebarang pelarut. Serbuk n-HAP yang terhasil digunakan dalam fabrikasi dua jenis biobahan (bioseramik HAP dan nanobiokomposit PLA/n-HAP). Sampel-sampel HAP mentah dan n-HAP terkalsin telah dipadatkan sebagai jasad anum, lalu disinter pada pelbagai suhu (1000-1400°C) untuk penghasilan bioseramik. n-HAP terkalsin yang terbaik dicampurkan dengan PLA secara percampuran lebur serta pengacuanan suntikan bagi proses fabrikasi nanobiokomposit PLA/n-HAP. Pencirian terhadap serbuk n-HAP, bioseramik n-HAP dan nanobiokomposit dilakukan menerusi analisis termogravimatri (TGA), pembelauan sinar-X (XRD), inframerah transformasi Fourier(FTIR), mikroskop elektron imbasan pancaran medan (FESEM), spektroskop sinar-X serakan tenaga (EDX) dan pendafluor sinar-X (XRF), mesin ujian universal (UTM) dan indeks aliran lebur (MFI). Data TGA menunjukkan bahawa n-HAP mempunyai kestabilan terma pada 1300°C. n-HAP terekstrak mempunyai kehabluran yang tinggi, dan saiz kristalit berjulat 10-83 nm berdasarkan kepada ujian XRD. Ketumpatan serta kekerasan bioseramik n-HAP bertambah selaras dengan kenaikan suhu sinter, dan menunjukkan nilai maksimum pada suhu 1400°C. Keputusan ujian bagi nanobiokomposit PLA/n-HAP menunjukkan bahawa peningkatan jumlah n-HAP (pada 5wt%) menurunkan kekuatan kekuatan nanobiokomposit berikut pelekatan antaramuka yang lemah. Pelekatan antaramuka dipertingkatkan oleh penambahan 1 wt% maleik anhidrida (MAH). Aspek bioserasi bagi nanobiokomposit diuji di dalam simulasi cecair badan (SBF). Keputusan menunjukkan pertumbuhan apatit pada permukaan kedua-dua biobahan. Oleh itu, kedua-dua biobahan yang diformulakan adalah berpotensi sebagai biobahan perubatan untuk aplikasi ortopedik.
TABLE OF CONTENTS

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF SYMBOLS AND ABBREVIATIONS xxiii
LIST OF APPENDICES xxvii

CHAPTER 1 INTRODUCTION 1
 1.1 Background of study 1
 1.2 Problem statement 5
 1.3 Research objectives 8
 1.4 Scope of study 9
 1.5 Significance of the study 11

CHAPTER 2 LITERATURE REVIEW 13
 2.1 Introduction 13
 2.2 Bone 13
 2.2.1 Bovine bone 14
 2.2.2 Components and composition of bone 16
 2.2.3 Mechanical properties of bone 18
 2.3 Function of bone 19
 2.4 Bone substitute materials 20
 2.5 Biomaterials 22
 2.5.1 Metal and alloys 25
 2.5.2 Bioceramics 26
2.5.3 Biopolymer 28
2.5.4 Biocomposites 31
2.6 Nanohydroxyapatite (n-HAP) 35

2.7 Properties and characterizations of n-HAP 36
 2.7.1 Physical properties 36
 2.7.2 Thermal properties 36
 2.7.3 Structural properties 37
 2.7.4 Morphological properties 40
 2.7.5 Chemical properties 40

2.8 Techniques for preparation of n-HAP 41
 2.8.1 Synthetic chemical methods 42
 2.8.2 Extraction from natural resources 42

2.9 Hydrothermal extraction of hydroxyapatite from bovine bone 45
2.10 Heat treatment 50
 2.10.1 Calcination 50
 2.10.2 Effect of heat treatment on crystallinity 51

2.11 n-HAP bioceramics 52
 2.11.1 Densification of n-HAP 52

2.12 Properties and characterizations of n-HAP bioceramics 54
 2.12.1 Physical properties 54
 2.12.2 Structural properties 55
 2.12.3 Mechanical properties 57

2.13 Applications of n-HAP 59

2.14 Polylactic acid (PLA) 61

2.15 Properties and characterizations of PLA 61
 2.15.1 Physical properties 62
 2.15.2 Thermal properties 63
 2.15.3 Structural properties 63
 2.15.4 Mechanical properties 65

2.16 PLA/n-HAP bionanocomposite 67
 2.16.1 The role of compatibilizer in PLA/n-HAP bionanocomposite 68
2.17 Properties and characterization of PLA/n-HAP bionanocomposite
2.17.1 Thermal properties
2.17.2 Morphological properties
2.17.3 Tensile properties
2.17.4 Melt flow properties
2.18 Fabrication techniques for PLA/n-HAP bionanocomposite
2.19 Injection moulding
2.20 Application of PLA/n-HAP bionanocomposite
2.21 In vitro biocompatibility

CHAPTER 3 METHODOLOGY
3.1 Introduction
3.2 Materials
3.3 Methods
3.4 Extraction of HAP from bovine bone
3.4.1 Hydrothermal cleaning and defatting process with bovine bone slices
3.4.2 Hydrothermal sterilized processes with bovine bone slices
3.5 Bovine bone powder preparation
3.5.1 Crushing
3.5.2 Grinding
3.5.3 Sieving
3.6 Calcination
3.7 Particle size analysis (PSA) of raw-HAP
3.8 Production of bioceramics from raw and calcined n-HAP powder
3.8.1 Compaction (preparation of HAP pellets)
3.9 Fabrication of PLA/n-HAP bionanocomposite

Bookmark not defined.

3.10 Characterizations of n-HAP powder, bioceramic and PLA/n-HAP bionanocomposite

Error! Bookmark not defined.

3.10.1 Physical properties

Error! Bookmark not defined.

3.10.2 Thermal properties

Error! Bookmark not defined.

3.10.3 Structural properties

Error! Bookmark not defined.

3.10.4 Chemical properties

Error! Bookmark not defined.

3.10.5 Vickers hardness test

Error! Bookmark not defined.

3.10.6 Tensile tests

Error! Bookmark not defined.

3.10.7 Morphological properties

Error! Bookmark not defined.

3.10.8 Melt flow properties

Error! Bookmark not defined.

3.11 In vitro biocompatibility test

Error! Bookmark not defined.

3.11.1 Weight changes and pH

Error! Bookmark not defined.

3.11.2 Morphological properties

Error! Bookmark not defined.

CHAPTER 4 RESULTS AND DISCUSSION

Error! Bookmark not defined.

4.1 Introduction

Error! Bookmark not defined.

4.2 Particle size analysis of the raw-HAP

Error! Bookmark not defined.

4.3 Characterization of n-HAP powder

Error! Bookmark not defined.

4.3.1 Effect of calcination temperatures on weight loss and color changes

Error! Bookmark not defined.

4.3.2 Effect of calcination temperatures on thermal properties

Error! Bookmark not defined.

4.3.3 Effect of calcination temperatures on structural properties

Error! Bookmark not defined.

4.3.4 Effect of calcination temperatures on morphological properties

Error! Bookmark not defined.

4.3.5 Effect of calcination temperatures on
chemical properties Error! Bookmark not defined.

4.4 Characterization of n-HAP bioceramics Error! Bookmark not defined.

4.4.1 Effect of sintering temperatures on physical properties Error! Bookmark not defined.

4.4.2 Effect of sintering temperatures on phase formation and stability Error! Bookmark not defined.

4.4.3 Effect of sintering temperatures on hardness property of n-HAP bioceramic Error! Bookmark not defined.

4.5 Characterization of PLA/n-HAP-900 bionanocomposite Error! Bookmark not defined.

4.5.1 Effect of calcined n-HAP loading on thermal properties of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.5.2 Effect of calcined n-HAP loading on structural properties of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.5.3 Effect of calcined n-HAP loading on chemical properties of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.5.4 Effect of calcined n-HAP loading on tensile properties of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.5.5 Effect of calcined n-HAP loading on morphological properties of fracture surface of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.5.6 Effect of calcined HAP loading on MFI of PLA/n-HAP bionanocomposite Error! Bookmark not defined.

4.6 Characterization of compatibilized PLA/n-HAP-900 bionanocomposite Error! Bookmark not defined.

4.6.1 Effect of compatibilizer loading on thermal...
properties of PLA/3%n-HAP bionanocomposite

Bookmark not defined.

4.6.2 Effect of compatibilizer loading on structural properties of PLA/3%n-HAP bionanocomposite

Bookmark not defined.

4.6.3 Effect of compatibilizer loading on chemical properties of PLA/3%n-HAP bionanocomposite

Bookmark not defined.

4.6.4 Effect of compatibilizer loading on tensile properties of PLA/3%n-HAP bionanocomposite

Bookmark not defined.

4.6.5 Effect of compatibilizer loading on morphological properties of PLA/3%n-HAP bionanocomposite

Error! Bookmark not defined.

4.6.6 Effect of compatibilizer loading on MFI of PLA/n-HAP bionanocomposite

Error! Bookmark not defined.

4.7 *In vitro* biocompatibility test in SBF solution

Bookmark not defined.

4.7.1 Effect of immersion time on pH of n-HAP-900 bioceramic and PLA/3%n-HAP bionanocomposite samples

Error! Bookmark not defined.

4.7.2 Effect of immersion time on weight change of n-HAP-900 bioceramic and PLA/3%n-HAP bionanocomposite samples

Error! Bookmark not defined.

4.7.3 Effect of immersion time on morphological properties of n-HAP-900 bioceramic and PLA/3%n-HAP bionanocomposite samples

Error! Bookmark not defined.

Bookmark not defined.

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Error! Bookmark not defined.

5.2 Recommendations

Error! Bookmark not defined.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>90</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>262</td>
</tr>
<tr>
<td>VITA</td>
<td>143</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.1 Compositions of enamel, bone and hydroxyapatite (HAP) 18
2.2 Human bone mechanical properties 19
2.3 The requirement for biomaterials performance 23
2.4 Application of bioceramics in the biomedical field 27
2.5 Applications of non-degradable polymer in the biomedical field 29
2.6 Applications of biodegradable polymer in the biomedical field 31
2.7 Physical properties of synthetic HAP 36
2.8 Different methods of HAP extraction from bovine bone 44
2.9 Mechanical properties of synthetic HAP 57
2.10 Mechanical properties of PLA 66
2.11 Different ion concentrations (mM) of human blood plasma and SBF 84
3.1 Properties of PLA (Ingeo™ biopolymer 3052 D) 90
3.2 Sample code for HAP powder 96
3.3 Composition and sample code of PLA/n-HAP-900 bionanocomposite 105
3.4 Parameters for injection moulding process 106
3.5 Chemicals for preparing SBF solution (pH7.40, 1L) 127
4.1 Distribution of particles at 10%, 30% and 60% 133
4.2 Residues and color of raw and calcined bovine bone HAP samples 134
4.3 Characteristics peaks of infrared spectra assigned to HAP extracted from bovine bone 147
4.4 Composition of the raw-HAP and calcined n-HAP at different temperature, obtained from XRF analysis

4.5 Composition of the raw-HAP and calcined n-HAP at different temperature, in oxide form obtained from XRF analysis.

4.6 Phases detected at room temperature in the raw and calcined HAP samples when sintered at various temperature

4.7 Thermal characteristics of neat-PLA and bionanocomposite obtained from DSC

4.8 Crystallite size and crystallinity of n-HAP in PLA/n-HAP bionanocomposite

4.9 Characteristics peaks of neat-PLA, PLA/n-HAP bionanocomposite and n-HAP-900 biofiller

4.10 Elemental composition of PLA/n-HAP-900 bionanocomposite with different wt% of n-HAP-900 loading

4.11 Thermal characteristics of neat-PLA and compatibilized bionanocomposite obtained from DSC

4.12 Crystallite size and crystallinity of n-HAP in MAH-PLA/3%n-HAP bionanocomposite

4.13 Characteristics peaks of neat-PLA, PLA/3%n-HAP bionanocomposite and n-HAP-900

4.14 Elemental composition of PLA/3%n-HAP-900 bionanocomposite with different wt% of MAH
LIST OF FIGURES

2.1 The different level of bone from macrostructure to sub-nanostructure 14
2.2 Structure of cortical and cancellous bone 15
2.3 Organization of HAP crystals and collagen fibers within the microstructure of bone 16
2.4 Bone tissue components 17
2.5 Properties and application of biomaterials used in biomedical applications 24
2.6 Classes of biomaterial 25
2.7 Different applications of polymeric nanocomposites in the biomedical engineering field 34
2.8 Hexagonal unit cell of n-HAP 38
2.9 (a) Hypothetical arrangement of the HAP unit cell, (b) Types of calcium ion sites within the HAP lattice 39
2.10 A schematic diagram demonstrating the changes occurring with particles during sintering 53
2.11 Principle of the Vickers hardness test 58
2.12 Properties and application of n-HAP 60
2.13 Chemical structure of PLA 60
2.14 Atomic chemical structure of L- and D-lactic acid 65
2.15 Schematic representation of thermoplastic injection molding machine 79
2.16 Schematic presentations of the origin of negative charge on the HA surface and the process of bonelike apatite formation thereon in SBF 86
3.1 Overall research framework of the fabrication of PLA/n-HAP bionanocomposite 89
3.2 Schematic representation of extraction of n-HAP from bovine bone

3.3 Bovine bone (a) before treatment (b) after treatment

3.4 Bovine bone (a) sterilized sample (b) dried sample

3.5 (a) Crusher machine and (b) crushed sample

3.6 (a) Ball mill machine (model RS-1S) and (b) milled sample

3.7 Retsch sieve shaker

3.8 Calcination profile of HAP powder

3.9 CILAS particle size analyzer (model 1180)

3.10 Flowchart for the production of n-HAP bioceramics

3.11 (a) The mould and die set for powder compaction and (b) powder compaction press (Carver, USA)

3.12 Green bodies of raw-HAP and calcined n-HAP samples (a) Raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800 (e), n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100

3.13 Sintering profile for n-HAP bioceramics

3.14 Research framework for fabrication of PLA/n-HAP bionanocomposite

3.15 (a) PLA (IngeoTM biopolymer 3052D) and (b) n-HAP-900

3.16 PW 3000 two-roll mill

3.17 Crushed sample of PLA/n-HAP-900 bionanocomposite

3.18 NP7-IF Injection moulding machine

3.19 Images representing tensile strength samples (a) neat-PLA, (b) PLA/1%n-HAP-900, (c) PLA/3%n-HAP-900 and (d) PLA/5%n-HAP-900

3.20 Images representing tensile strength samples (a) PLA/3%n-HAP-900 (b) 0.5MAH-PLA/3%n-HAP-900 (c) 1.0MAH-PLA/3%n-HAP-900 and (d) 1.5MAH-PLA/3%n-HAP-900
3.21 Thermal gravimetric analyzer (Linseis L81/1550) 111
3.22 Universal V4.5A TA DSC instrument 112
3.23 Sample preparation for XRD analysis 113
3.24 XRD machine (Bruker D8 Advance) 114
3.25 FT-IR Perkin Elmer spectrum 100 117
3.26 XRF pellet of uncalcined and calcined n-HAP samples at different calcination temperatures (a) Raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800 (e), n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100 118
3.27 XRF Model Bruker S4Pioneer 118
3.28 Grinder for sample grinding and polishing (Metaserv Polisher-Grinder) 119
3.29 Vickers hardness tester (Shimadzu) 120
3.30 Tensile test machine (AGS-J Shimadzu) 121
3.31 FISON SEM coating system (sputter coater) 123
3.32 FESEM machine (JEOL JSM- 7600F) 123
3.33 SEM machine (HITACHI SU1510) 124
3.34 Melt flow machine (Zwick/Roell 4106) 126
3.35 Samples immersed in SBF solution 129
4.1 Histogram representation of the mean diameters of n-raw-HAP suspended in an aqueous solution 132
4.2 Raw and calcined n-HAP samples at different calcination temperatures (a) raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800 (e), n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100 135
4.3 TGA analysis of the raw-HAP extracted from bovine bone 135
4.4 Degradation mechanism during TGA analysis 136
4.5 XRD patterns of raw-HAP and calcined n-HAP samples at different calcination temperatures (600°C-1100°C) (a) raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800, (e) n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100 compared with standard HAP 138
4.6 Crystallographic properties of raw-HAP and calcined n-HAP samples at different calcination temperatures (600°C-1100°C) (a) crystallite size (D), (b) crystallinity (%), (c) lattice parameter (a- and c-axis), (d) unit cell volume (Å3) and (e) and lattice strain (η)

4.7 FESEM micrographs of raw-HAP and calcined n-HAP samples at different calcination temperatures (600°C-1100°C) (a) raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800, (e) n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100

4.8 FTIR spectra of raw-HAP and calcined n-HAP samples at different calcination temperatures (600°C-1100°C) (a) raw-HAP (b), n-HAP-600, (c) n-HAP-700, (d) n-HAP-800 (e), n-HAP-900 (f) n-HAP-1000 and (g) n-HAP-1100

4.9 EDX analysis of raw-HAP and calcined n-HAP samples at different calcination temperatures (600°C-1100°C) (a) raw-HAP,(b) n-HAP-600, (c) n-HAP-700, (d) n-HAP-800,(e) n-HAP-900 (f) n-HAP-1000 and (g) n-HAP-1100

4.10 (a) Variation of elements concentration (atomic %) in n-HAP powder determined by EDX methods at different calcination temperatures and (b) variation in the Ca/P ratio with increasing calcination temperature

4.11 Effect of sintering temperatures on linear shrinkage of raw-HAP and calcined n-HAP

4.12 Effect of sintering temperatures on density of sintered raw-HAP and calcined n-HAP

4.13 Effect of sintering temperatures on bulk density of sintered raw-HAP and calcined n-HAP

4.14 Effect of sintering temperatures on apparent porosity of raw-HAP and calcined n-HAP
4.15 XRD diffractograms of raw-HAP and calcined n-HAP samples (a) raw-HAP,(b) n-HAP-600, (c) n-HAP-700,(d) n-HAP-800, (e) n-HAP-900, (f) n-HAP-1000 and (g) n-HAP-1100

4.16 Effect of sintering temperatures on Vickers Hardness of raw-HAP and calcined n-HAP

4.17 DSC melting curves of neat-PLA and PLA/n-HAP-900 bionanocomposite with different wt% of n-HAP-900 loading (a) neat-PLA (b), PLA/1%n-HAP-900, (c) PLA/3%n-HAP-900 and (d) PLA/5%n-HAP-900

4.18 XRD pattern of n-HAP-900, neat-PLA and PLA/n-HAP-900 bionanocomposite with different wt% of n-HAP-900 loading (a) neat-PLA (b), PLA/1%n-HAP-900, (c) PLA/3%n-HAP-900, (d) PLA/5%n-HAP-900 and (e) n-HAP-900 compared with standard HAP (PDF card no. 00-009-0432)

4.19 FTIR spectra of n-HAP-900, neat-PLA and PLA/n-HAP-900 bionanocomposite with different n-HAP-900 loading (a) neat-PLA (b), PLA/1%n-HAP-900, (c) PLA/3% n-HAP-900, (d) PLA/5% n-HAP-900 and (e) n-HAP-900

4.20 Tensile strength of neat-PLA and PLA/n-HAP-900 bionanocomposite with different HAP loading

4.21 Tensile modulus of neat-PLA and PLA/n-HAP-900 bionanocomposite with different HAP loading

4.22 Percentage elongation at break of neat-PLA and PLA/n-HAP-900 bionanocomposite with different HAP loading

4.23 Images representing fractured tensile strength samples (a) neat-PLA, (b) PLA/1%n-HAP-900, (c) PLA/3%n-HAP-900 and (d) PLA/5%n-HAP-900

4.24 SEM Fractographs of fractured surface of PLA/n-HAP-900 bionanocomposite with different wt% of n-
HAP-900 loading (a) neat-PLA (b), PLA/1\%n-HAP-900, (c) PLA/3\%n-HAP-900, (d) PLA/5\%n-HAP-900

4.25 EDX analysis of PLA/n-HAP-900 bionanocomposite with different wt\% of n-HAP-900 loading (a) neat-PLA (b), PLA/1\%n-HAP-900, (c) PLA/3\%n-HAP-900, (d) PLA/5\%n-HAP-900

4.26 MFI value of PLA/n-HAP-900 bionanocomposite obtained at different n-HAP loadings

4.27 MFI value of PLA/n-HAP-900 bionanocomposite obtained at different processing temperature

4.28 DSC melting curves of neat-PLA and PLA/3\%n-HAP-900 bionanocomposite with different wt \% of compatibilizer loading (a) neat-PLA (b) PLA/3\% n-HAP-900, (c) 0.5MAH-PLA/3\%n-HAP-900, (d) 1.0MAH-PLA/3\%n-HAP-900 and (e)1.5MAH-PLA/3\% n-HAP-900

4.29 XRD patterns of n-HAP-900, neat-PLA and PLA/3\%n-HAP-900 bionanocomposite with different wt \% of compatibilizer (a) Neat PLA (b) PLA/3\% n-HAP-900, (c) 0.5MAH-PLA/3\%n-HAP-900, (d) 1.0MAH-PLA/3\%n-HAP-900, (e)1.5MAH-PLA/3\% n-HAP-900 and (f) n-HAP-900 compared with standard HAP (PDF card no. 00-009-0432)

4.30 FTIR spectra of n-HAP-900, neat-PLA and PLA/3\%n-HAP-900 bionanocomposite with different wt \% of compatibilizer (a) neat-PLA (b) PLA/3\% n-HAP-900, (c) 0.5MAH-PLA/3\%n-HAP-900, (d) 1.0MAH-PLA/3\%n-HAP-900, (e)1.5MAH-PLA/3\% n-HAP-900 and (f) n-HAP-900

4.31 Tensile strength of neat-PLA and PLA/3\%n-HAP-900 bionanocomposite with different wt \% of MAH compatibilizer

4.32 Tensile modulus of neat-PLA and PLA/3\%n-HAP-
900 bionanocomposite with different wt% of MAH compatibilizer

4.33 Percentage elongation at break of neat-PLA and PLA/3%n-HAP-900 bionanocomposite with different wt% of MAH compatibilizer

4.34 Images representing fractured tensile strength samples (a) PLA/3%n-HAP-900 (b) 0.5MAH-PLA/3%n-HAP-900 (c) 1.0MAH-PLA/3%n-HAP-900 and (d) 1.5MAH-PLA/3%n-HAP-900

4.35 SEM fractographs of fractured surface of uncompatibilized and compatibilized PLA/3%n-HAP-900 bionanocomposite with different wt % of compatibilizer (a) PLA/3%n-HAP-900, (b) 0.5MAH-PLA/3%n-HAP-900, (c) 1.0MAH-PLA/3%n-HAP-900 and (d) 1.5MAH-PLA/3%n-HAP-900

4.36 EDX analysis of uncompatibilized and compatibilized PLA/3%n-HAP-900 bionanocomposite with different wt % of compatibilizer (a) PLA/3%n-HAP-900, (b) 0.5MAH-PLA/3%n-HAP-900, (c) 1.0MAH-PLA/3%n-HAP-900 and (d) 1.5MAH-PLA/3%n-HAP-900

4.37 MFI value of neat-PLA and PLA/3%n-HAP-900 bionanocomposite obtained at different wt% of MAH compatibilizer loading

4.38 MFI value of neat-PLA and PLA/3%n-HAP-900 bionanocomposite with different wt% of MAH compatibilizer obtained at different processing temperature

4.39 pH measurements of n-HAP-900 bioceramic, neat-PLA and PLA/3%n-HAP-900 bionanocomposite after immersion in SBF solution at various time periods; (a) n-HAP-900 bioceramic, (b) neat-PLA (c) PLA/3%n-HAP-900 and (d) 1.0MAHPLA/3%n-HAP-900
4.40 Weight change measurements of neat-PLA, PLA/3%n-HAP-900 bionanocomposite and n-HAP-900 bioceramic after immersion in SBF at various times periods

4.41 SEM micrographs of neat-PLA before and after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days

4.42 EDX analysis of neat-PLA before and after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days

4.43 SEM micrographs of PLA/3%n-HAP-900 bionanocomposite after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days

4.44 EDX analysis of uncompatibilized PLA/3%n-HAP bionanocomposite samples before and after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days

4.45 SEM micrographs of compatibilized PLA/3%n-HAP-900 bionanocomposite after immersion in SBF, (a) 1day, (b) 7 day and (c) 14 days

4.46 EDX analysis of compatibilized PLA/3%n-HAP bionanocomposite samples before and after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days

4.47 SEM micrographs of n-HAP-900 bioceramic before and after immersion in SBF (a) before immersion, (b) 1 day, (c) 7 days and (d) 14 days

4.48 EDX analysis of n-HAP bioceramic samples before and after immersion in SBF; (a) before immersion, (b) I day (c) 7 days and (d) 14 days
LIST OF SYMBOLS AND ABBREVIATIONS

cm : Centimetre
cm^2 : Centimetre Square
cm^3 : Centimetre Cubic
$°C/min$: Degree Celsius per Minute
D : Diameter
d : Interspacing between Diffraction Lattice Plane
$ΔT$: Change in Temperature
$ΔHm$: Change in Melt Enthalpy
F : Force (N)
GPa : Giga Pascal
h : Hours
Kg : Kilogram
kt : Metric kilo tons
L : Length (cm)
$λ$: Wavelength
$µm$: Micrometre
$µ$: Micron
mm : Millimetre
mg : Milligram
MPa : Mega Pascal
nm : Nanometre
Pa : Pascal
$%$: Percentage
P : Pressure
$Q3$: Cumulative Distribution by Volume or Mass
q_3 : Density Distribution by Volume or Mass
$ρ$: Density, g/cm3
η : Lattice Strain

θ : Diffraction Angle

T_{m} : Melting Temperature

T_{c} : Crystallization Temperature

T_{cc} : Cold Crystallization Temperature

T_{g} : Transition Temperature

T : Temperature ($^\circ$C)

W : Width (mm)

$wt\%$: Weight Percentage

X_c : Crystallinity

ATR : Attenuated Total Reflectance

AFM : Atomic Force Microscopy

ASTM : American Society for Testing and Materials

Al_2O_3 : Aluminium Oxide

α – TCP : Alpha Tri Calcium Phosphate

β – TCP : Beta Tri Calcium Phosphate

BET : Brunauer–Emmett–Teller

$CAGR$: Compound Annual Growth Rate

Cl : Chlorine

$CsCl$: Cesium Chloride

CaO : Calcium Oxide

$CaCO_3$: Calcium Carbonate

d-HAP : Ca-Deficient HAP

DMA : Dynamic Mechanical Calorimetry

DNA : Deoxyribonucleic Acid

DCP : Dicumyl Peroxide

DMA : Dynamic Mechanical Analysis

DSC : Differential Scanning Calorimetry

EDX : Energy-dispersive X-Ray

FDA : Food and Drug Administration

Fe_2O_3 : Ferro-oxide

$FTIR$: Fourier-Transform Infrared Spectroscopy

$FESEM$: Field Emission Scanning Electron Microscopy

$FWHM$: Full Width at Half Maximum
REFERENCES

subjected to severe loading conditions. Part 2. Quasi-static tensile tests and
dynamic mechanical analysis at ambient and moderately high temperature.

Polymer Testing, 57, 235–244.

Nanocrystalline hydroxyapatite for bone repair: An animal study. *Journal of

surface modification and processing conditions on distribution behaviour of
silica nanofillers in polyesters. *Colloid and Polymer Science*, 285(11), 1267–
1273.

tissue engineering. *Biomaterials*, 21(23), 2347–2359.

nano fillers on the performance of wood polymer nanocomposites. *Composites

Calvert, J. W., Marra, K. G., Cook, L., Kumta, P. N., Dimilla, P. A., & Weiss, L. E.
(2000). Characterization of osteoblast-like behavior of cultured bone marrow
stromal cells on various polymer surfaces. *Journal of Biomedical Materials
Research*, 52(2), 279–284.

Processing of poly(lactic acid): Characterization of chemical structure, thermal
stability and mechanical properties. *Polymer Degradation and Stability*, 95(2),
116–125.

Catledge, S. a., Fries, M. D., Vohra, Y. K., Lacefield, W. R., Lemons, J. E.,
Biomedical Implants. *Journal of Nanoscience and Nanotechnology*, 2(3), 293–
312.

Bone repair and augmentation using block of sintered bovine-derived anorganic

Han, W., Zhao, J., Tu, M., Zeng, R., Zha, Z., & Zhou, C. (2013). Preparation and

International Organization for Standardization (2011). *Plastics-Determination of the melt mass-flow rate (MFR) and melt volumeflow rate (MVR) of*
thermoplastics. ISO 1133-1.

Materials in Medicine, 15(7), 817–823.
Biomaterials, 27(8), 1399–1409.

2606.

Pang, X., & Huang, Y. (2012). Physical properties of nano-HAs/ZrO₂ coating on

characterization of nanocrystalline hydroxyapatite from natural bovine bone.

Sommerfeldt, D., & Rubin, C. (2001). Biology of bone and how it orchestrates the
form and function of the skeleton. European Spine Journal, 10(2), 86–95.

Tsuji, H., & Ikada, Y. (1998). Blends of Aliphatic Polysters. II. Hydrolysis of Solution-Cast Blends from Poly (L-lactide) and Poly (e-caprolactone) in

