DESIGN A HIGH GAIN UWB MIMO UNIPLANAR MONOPOLE ANTENNA WITH FSS ARRAY FOR METALLIC OBJECT MICROWAVE IMAGING

RAED ABDULKAREEM ABDULHASAN

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

AUGUST 2019
“To my beloved parents for their praying and supporting. Specially to my lovely wife your praying, supporting, and patience keeps me up alive and my lovely kids”.

“To my family, country, the Iraqi government, and all the people for safe life”.
ACKNOWLEDGEMENT

Gratitude to ALLAH Almighty for providing the opportunity and giving me the strength to complete this work.

I would like to express my utmost gratitude and appreciations to my main supervisor Assoc. Prof. Dr. Rozlan Bin Alias for his guidance, encouragement, and assistance throughout this amazing research journey. My sincere appreciation also extends to my co-supervisors Dr. Khairun Nidzam Bin Ramli for his assistance and encouragement. Further thank to Dr. Lukman Audah, Assoc. Prof. Dr. Samsul Haimi Dahlan, Assoc. Prof. Dr. Noorsaliza Abdullah, Assoc. Prof. Dr. Fauziahanim Che Seman, and Prof. Dr. Raed A. Abd-Alhameed, for their assistance and suggestions.

Thanks and acknowledgement to the Iraqi government for providing the opportunity to complete this work. Further thanks to the Malaysian government, spatially, Universiti Tun Hussein Onn Malaysia (UTHM) for offering facilities.

My sincere thanks to the staff of Wireless and Radio Science Centre (WARAS), Radio Communication and Antenna Design (RACAD), Electromagnetic Compatibility Centre (EMC), and Microwave & RF, and PCB laboratory, Universiti Tun Hussein Onn Malaysia (UTHM), for providing technical facilities for this work.

Most importantly, I would like to thank my parents and my wife for their supporting, praying, and patience. Farther thanks to my sisters, my brothers, and other family members. Special thanks to my friends in Iraq and Malaysia, Abdul Rashid Omar Mumin, Yasir Amer Al-Jawhar, and the others for their continuous support throughout this journey and other friends in general.
ABSTRACT

Ultra-wideband (UWB) system plays an important role in microwave imaging (MWI) applications due to its broad bandwidth, non-ionising radiation, and cost-efficiency. This study involves the design and development phases for the optimum solution of UWB antenna’s issues. In the design phase, a compact uniplanar hexagonal UWB monopole antenna with a coplanar waveguide (CPW) feed is designed. The proposed UWB antenna has an oscillate impedance (Za) of 50 Ω. A meander-line notch filter is loaded on the designed antenna that achieves a high rejection (S_{11} = -1.75 dB) at the band of 3.0 GHz for 5G mid-band. A T-strip is inserted between the two proposed MIMO antennas to improve the isolation. Moreover, the smallest uniplanar UWB frequency selective surface (FSS) unit cell size (0.095λ×0.095λ) is miniaturized on the FR4 substrate. The simulations are compared with the equivalent circuit models of the proposed solutions, then validate with the measurement results. In the development phase, the hexagonal monopole MIMO antenna, the CPW feed, the isolation T-strip, and the 3 × 7 FSS array are assembled to develop the MWI. The isolated MIMO antenna with FSS (IMAF) achieves a bandwidth of 3-11.7 GHz, unidirectional radiation patterns, mutual coupling (S_{21} about -27 dB) and gain (6-8.5 dBi), and it better than the existing antennas of 3.1-10.6 GHz, -20 dB, and 5.5 dBi, respectively. Additionally, the baggage–scanner scheme is developed as a case study to evaluate the IMAF for near-field MWI. The evaluated images show a resolution of the IMAF is 55% higher than that of the MIMO antenna without an FSS array. Thus, the proposed IMAF detects the smallest (0.5 × 2 cm²) metallic object with a location accuracy of ± 0.5 cm compared with the recent simulation study of (0.6 × 0.6 cm² and ±1.1 cm, respectively). A good agreement is observed between the simulated and measured images of the MWI. Consequently, the IMAF is proved to be applicable as part of the detection system for low-cost and non-intricate baggage–scanner imaging to detect metallic objects.
ABSTRAK

Sistem jalurlebar-ultra (UWB) memainkan peranan penting dalam aplikasi pengimekan gelombang mikro (MWI) kerana lebar jalur yang luas, sinaran tak mengion, dan kecepatan kos. Kajian ini melibatkan fasa rekabentuk dan pembangunan untuk penyelesaian optimum masalah antena UWB. Dalam fasa rekabentuk, sebuah antena padat ekakutub UWB heksagon satah sesisi dengan suapan pandu gelombang sesatah (CPW) telah direkabentuk. Antena UWB yang dicadangkan mempunyai galangan berayun (Za) sebanyak 50 Ω. Sebuah penapis takuk garisan liku dimuatkan pada antena yang direkabentuk yang mencapai penolakan tinggi (S_{11} = -1.75 dB) pada jalur 3.0 GHz untuk band 5G. Sebuah jalur-T telah dimasukkan di antara dua antena MIMO yang dicadangkan untuk meningkatkan pemencilan. Tambahan lagi, saiz sel unit terkecil permukaan pemilihan frekuensi (FSS) UWB satah sesisi (0.095λ × 0.095λ) telah dipatikan pada substratum FR4. Simulator dibandingkan dengan model litar bersamaan bagi penyelesaian yang dicadangkan, kemudian disahkan dengan hasil pengukuran. Dalam fasa pembangunan, antena MIMO ekakutub heksagon, suapan CPW, pemencilan jalur-T, dan 3 × 7 tatususun FSS telah dihipumkan untuk membangunkan MWI. Antena MIMO terpencil dengan FSS (IMAF) mencapai lebar jalur 3-11.7 GHz, corak sinaran searah, gandiking bersama (S_{21} bout -27 dB) dan keuntungan (6-8.5 dBi), dan lebih baik daripada antena sedia ada 3.1-10.6 GHz, -20 dB, and 5.5 dBi, masing-masing. Di samping itu, skima pengimbas bagasi telah dibangunkan sebagai kajian kes untuk menilai IMAF bagi MWI medan berhampiran. Imej yang dinilai menunjukkan resolusi IMAF 55% lebih tinggi daripada antena MIMO tanpa tatususun FSS. Oleh itu, IMAF yang dicadangkan mengesan objek logam yang terkecil (0.5 × 2 cm²) dengan ketepatan lokasi ± 0.5 cm berbanding dengan kajian simulasi baru-baru ini ada (0.6 × 0.6 cm² dan ± 1.1 cm). Persetujuan yang baik dipatuhi antara imej MWI yang telah disimulasi dan diukur. Akibatnya, IMAF dibuktikan dapat digunakan sebagai sebahagian daripada sistem pengesanan
untuk pengimejan pengimbas bagasi kos rendah dan tidak rumit bagi mengesan objek logam.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 UWB standard and regulation</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research background</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Problem statement</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Research objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Research scope</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Significant contributions of the research</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Thesis organisation</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW OF UWB ANTENNA FOR MWI APPLICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>2.1 UWB systems for MWI applications</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Review of UWB antenna for MWI</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Types of planar UWB antenna</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Tapered slot Vivaldi UWB antenna</td>
<td>18</td>
</tr>
</tbody>
</table>
2.3.2 Antipodal Vivaldi UWB antenna (AVA) 21
2.3.3 Planar slot monopole UWB antenna 23
2.3.4 Planar patch monopole UWB antenna 26
2.3.5 Discussion 29

2.4 Critical review in UWB monopole antenna: issues and trade-offs 30
2.4.1 Bandwidth 31
2.4.2 Size miniaturization 34
2.4.3 Directional radiation pattern 37
2.4.4 Gain 43
2.4.5 Mutual coupling for MIMO 45
2.4.6 Interference 46

2.5 Selected issues, study direction, and research gap of UWB antenna 47

2.6 Review of the design concepts and theory 50
2.6.1 Theory of UWB monopole antenna 50
2.6.2 Theory of CPW feed 52
2.6.3 Theory of notch filter 54
2.6.4 Theory of MIMO isolation 55
2.6.5 Theory of FSS 57
2.7 Summary 58

CHAPTER 3 METHODOLOGY OF DESIGN AND DEVELOPMENT

UWB ANTENNA FOR MWI 59

3.1 Research phases 59
3.2 Design framework 62
3.3 Design phase 63
3.3.1 Equivalent circuit model 63
3.3.2 CPW feed 66
3.3.3 Uniplanar patch UWB monopole antenna 68
3.3.3.1 Design and configuration of hexagonal monopole antenna 70
3.3.3.2 Numerical derivation of the proposed antenna structure 75
3.3.3.3 Equivalent circuit of Antenna #3 80
3.3.4 Notch filter meander-line strip for band rejection 81
 3.3.4.1 Parametric study meander-line strip 83
 3.3.4.2 Equivalent circuit model antenna with notch 84
3.3.5 Isolation of UWB MIMO antenna (IMA) 85
 3.3.5.1 MIMO without isolation 85
 3.3.5.2 MIMO with isolation 87
 3.3.5.3 Equivalent circuit of MIMO antenna 88
3.3.6 FSS array for high gain and UDRP 90
 3.3.6.1 FSS unit cell design and operation mechanism 90
 3.3.6.2 FSS equivalent circuit model 91
 3.3.6.3 FSS simulation and fabrication 94
3.4 Development of UWB MIMO antenna with FSS array (IMAF) 96
3.5 CST microwave studio simulation 99
3.6 Fabrication process 100
3.7 Measurement procedures 101
3.8 Development/detection phase 104
 3.8.1 Microwave detection simulation setup 105
 3.8.2 Microwave detection measurement setup 106
 3.8.3 Microwave imaging processing 109
3.9 Validation and evaluation phase 111
3.10 Conclusion 112

CHAPTER 4 RESULTS ANALYSIS AND EXPERIMENTAL VALIDATION 114
4.1 Validation results of design hexagonal UWB antenna 114
 4.1.1 Side-feed line antenna 114
 4.1.2 Vertex-feed line antenna 115
 4.1.3 Equivalent circuit model 118
4.2 Results of notch filter 120
 4.2.1 Meander-line strip parametric study 120
 4.2.1.1 Meander-line horizontal length \(L_s \) 121
 4.2.1.2 Meander-line vertical length \(L_z \) 122
 4.2.1.3 Meander-line strip width \(ths \) 123
 4.2.2 Results validation of notch filter 124
4.2.3 Equivalent circuit model antenna with notch 127

4.3 Results validation of UWB MIMO isolation 129
 4.3.1 MIMO without isolation 129
 4.3.2 MIMO with isolation 131
 4.3.3 Equivalent circuit of MIMO antenna 136

4.4 Results validation of FSS array 137
 4.4.1 FSS simulation and equivalent circuit 137
 4.4.2 Prototype experimental results of FSS array 139

4.5 Results of UWB MIMO with FSS reflector (IMAF) 140
 4.5.1 Computing of IMAF 141
 4.5.2 Measurement validation 147

4.6 Evaluation phase and validation of MWI scanner 151
 4.6.1 Validation of IMAF 151
 4.6.2 Detection capability 154
 4.6.3 Evaluation of MWI antennas 155

4.7 Conclusion 161

CHAPTER 5 CONCLUSIONS AND FUTURE RECOMMENDATIONS 162
 5.1 Contributions and findings 162
 5.2 Recommendations and future work 165

REFERENCES 167

APPENDICES 184

LIST OF PUBLICATIONS AND AWARDS 201

VITA 204
LIST OF TABLES

1.1 Standards UWB band in the world ... 4
2.1 Literature evaluation based on bandwidth enhancement 33
2.2 Literature evaluation based on size miniaturization 37
2.3 Literature evaluation based on UDRP ... 42
2.4 Literature evaluation based on gain .. 45
2.5 The Punch-mark articles and specifications according to each issue of the monopole antenna .. 49
3.1 Dimensions and parameters of reference Antenna #1 72
3.2 Validation of calculated and simulated antenna parameters 78
3.3 Antenna #3 parameters .. 79
3.4 The parameters of the proposed MIMO monopole antenna 86
4.1 The calculated parameters of equivalent circuit 119
4.2 The optimum parameters of equivalent circuit 128
4.3 The specifications evaluation between the proposed and punch-mark studies of the monopole antenna ... 160
4.4 Evaluation between the developed MWI and the literature 160
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic structure for literature review</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Different radar approaches</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Cylindrical scanning system (a) mono-static and (b) bi-static</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Linear scanning MWI system (a) mono-static and (b) bi-static</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Spherical scanning MWI system using multi-static approach</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Taxonomy of literature on UWB antenna for MWI</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Techniques related to tapered slot Vivaldi antennas</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Techniques related to antipodal Vivaldi antennas</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Techniques related to slot monopole UWB antennas</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Techniques related to planar monopole UWB antennas</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Enhancement of antenna bandwidth in (a) and (b)</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Miniaturized antenna size using (a) slots and (b) cuts</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>(a) Antenna reflector and (b) cylindrical FSS</td>
<td>40</td>
</tr>
<tr>
<td>2.14</td>
<td>(a) Flexible array antenna and (b) graphene array antenna</td>
<td>44</td>
</tr>
<tr>
<td>2.15</td>
<td>UWB antenna (a) U-slot and (b) strip and EBG</td>
<td>47</td>
</tr>
<tr>
<td>2.16</td>
<td>Research area among the literature classifications</td>
<td>48</td>
</tr>
<tr>
<td>2.17</td>
<td>Circular disc monopole antenna</td>
<td>50</td>
</tr>
<tr>
<td>2.18</td>
<td>Schematic of UWB antenna operation principle</td>
<td>51</td>
</tr>
<tr>
<td>2.19</td>
<td>CPW feed</td>
<td>53</td>
</tr>
<tr>
<td>2.20</td>
<td>The notch filter and equivalent circuit</td>
<td>55</td>
</tr>
<tr>
<td>2.21</td>
<td>Two linear MIMO elements</td>
<td>56</td>
</tr>
<tr>
<td>2.22</td>
<td>Basic square-ring FSS unit cell and equivalent circuit</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Research process flowchart</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Design framework flowchart</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Parallel RLC circuit</td>
<td>64</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>UWB antenna equivalent circuit</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>CPW structure</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>The macro calculation of CPW geometry</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Various regular-shaped antennas with different configurations</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Geometries of Antenna #1 for (a) side and (b) top views</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>The configuration of the design steps for the proposed antenna</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>(a) Structure of derived monopole antenna, (b) design parameters, and (c) the equivalent dipole</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>(a) The proposed Antenna #3 structure with CPW feed and (b) fabrication prototype</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Simulation of the suggested circuit by using CST schematic</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>(a) The geometry and (b) equivalent circuit of meander-line strip (c) dimensions of the UWB antenna</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Fabrication prototype of UWB antenna with notch filter</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>The ECM schematic of the antenna and meander-line</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>The proposed MIMO with spacing distance (Da)</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>The proposed MIMO (Da = 42) mm with the parasitic stub (Antenna #4)</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Equivalent circuit model of isolated MIMO antenna</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>The ECM schematic of the MIMO antenna</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>Geometry of (a) FSS array, and (b) FSS unit cell</td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>FSS equivalent circuit model</td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>(a) FSS unit cell simulation setup and (b) equivalent circuit</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>(a) Photograph of the FSS array prototype 54×36 elements, (b) zoom view of the unit cells</td>
<td></td>
</tr>
<tr>
<td>3.24</td>
<td>3D schematic view of the proposed Antenna #5</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>Side view of antenna with FSS array</td>
<td></td>
</tr>
<tr>
<td>3.26</td>
<td>Prototype of IMAF Antenna #5</td>
<td></td>
</tr>
<tr>
<td>3.27</td>
<td>The simulation setup of the antenna design</td>
<td></td>
</tr>
<tr>
<td>3.28</td>
<td>Measurement equipment (a) R&S ZNB14 VNA, (b) R&S SMBV100A VSG, (c) R&S FSH20 SA, (d) BHA 9118 horn antenna, and (e) measurement S-parameters</td>
<td></td>
</tr>
</tbody>
</table>
3.29 The measurement setup of radiation pattern and in anechoic chamber 103
3.30 Bi-static free space FSS measurement (a) opposite and (b) adjacent schemes 104
3.31 Scheme setup of testing the model 105
3.32 (a) Simulated bag model (b) linear scanning scheme 106
3.33 Scheme setup of testing a sample with the proposed antenna 107
3.34 (a) Experiment scanning (b) photo baggage scanner testing 108
3.35 Imaging scheme configuration 109
3.36 The process of monitoring the measured reflected signals 111
4.1 (a) Fabrication prototype (b) measurement and simulation return loss 115
4.2 Measurement and simulation S_{11} of Antennas #1 and #3 116
4.3 The measured and simulated radiation patterns normalized at 4.0 GHz and 5.7 GHz for Antenna #3 117
4.4 The reference antenna simulated impedance (Real part) 118
Antenna #3 118
4.5 Validation of simulated and calculated antenna impedances (Real part) 118
4.6 Validation of simulated and calculated impedances (Imaginary part) 119
4.7 Impedance validation of the antenna and suggested equivalent circuit (a) Real part (b) Imaginary part 120
4.8 VSWR of meander line strip with a different length of L_s 121
4.9 VSWR of the meander-line strip with a different length of (L_z) 122
4.10 VSWR of the meander-line strip with a different width ths 123
4.11 The current distribution (a) at 3.0 GHz and (b) at 4.09 GHz 124
4.12 Simulated and measured $|S_{11}|$ of the proposed antenna with the strip 125
4.13 Simulated and measured VSWR of the antenna with the strip 125
4.14 The measured (black) and simulated (red) antenna patterns (a) 4 GHz E-plane, (b) 4 GHz H-plane, (c) 5.7 GHz E-plane, (d) 5.7 GHz H-plane 126
4.15 Antenna gain and radiation efficiency 127
4.16 ECM impedance validation real part in (a) and imaginary part in (b) 128
4.17 Simulated and measured S-parameters of MIMO antenna without strip 130
4.18 Gain and efficiency of Port-1 130
4.19 Simulated and measured S-parameters of MIMO Antenna #4 with isolation strip 131
4.20 The ECC of the isolated MIMO antenna 132
4.21 The diversity gain of the proposed MIMO antenna 133
4.22 Simulated current distribution Port-1 isolated MIMO at 4 GHz 133
4.23 Gain and efficiency of MIMO antenna with the strip (Port-1) 134
4.24 Simulated and measured normalized radiation patterns (a) 4 GHz, (b) 5 GHz, and (c) 6 GHz are H plane, (d) 4 GHz, (e) 5 GHz, and (f) 6 GHz are E plane of Port-1 isolated MIMO antenna 135
4.25 Impedance validation Real part in (a) and Imaginary part in (b) 136
4.26 Simulated transmission and reflection coefficients 138
4.27 Current distribution on FSS unit cell at (a) 4.0 GHz, and (b) 8.0 GHz 139
4.28 The simulated and measured S-parameters magnitude of FSS 140
4.29 Simulated study of antenna bandwidth and gain at the different Dz 141
4.30 Study of front and reflected unwrap antenna phase at the distances of Dz 142
4.31 Simulated magnitude S-parameters of IMAF (Antenna #5) 143
4.32 Simulated gain MIMO antenna with FSS of Port-1 144
4.33 The simulated the envelope correlation coefficient and diversity gain 144
4.34 Simulated S_{21} magnitude at different distances Dz 145
4.35 Reflection path of IMAF 146
4.36 (a) Front view current distribution, (b) top view electric field of IMAF Antenna #5 at 3 GHz Port-1
4.37 Measured magnitude S-parameters of the MIMO antenna with FSS
4.38 Gain validation and efficiency of Port-1 IMAF
4.39 Simulated (-----) and measured (-----) radiation pattern normalized H-planes in (a) 4 GHz, (b) 5 GHz, (c) 6 GHz and E-plane in (d) 4 GHz, (e) 5 GHz, (f) 6 GHz of Port-1 IMAF Antenna #5
4.40 The scattering data of MIMO antenna with and without FSS array
4.41 2D images of IMAF (a) simulated model (b) the tested handbag with 1×2 cm² metal object
4.42 Experimental 2D imaging with 1×2 cm² object using (a) IMAF (b) IMA
4.43 2D images of IMA evaluation (a) simulated model (b) testing
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>AMC</td>
<td>Artificial magnetic conductor</td>
</tr>
<tr>
<td>AND</td>
<td>Logic operator</td>
</tr>
<tr>
<td>AUT</td>
<td>Antenna under test</td>
</tr>
<tr>
<td>AVA</td>
<td>Antipodal Vivaldi antenna</td>
</tr>
<tr>
<td>BiD</td>
<td>Bidirectional radiation pattern</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CPW</td>
<td>Coplanar waveguide feed</td>
</tr>
<tr>
<td>CST</td>
<td>Computer simulation technology</td>
</tr>
<tr>
<td>DG</td>
<td>Diversity gain</td>
</tr>
<tr>
<td>DGS</td>
<td>Defected ground structure</td>
</tr>
<tr>
<td>EBG</td>
<td>Electromagnetic band-gap</td>
</tr>
<tr>
<td>ECC</td>
<td>Envelope correlation coefficient</td>
</tr>
<tr>
<td>ECM</td>
<td>Equivalent circuit model</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>FBW</td>
<td>Fractional bandwidth</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission USA</td>
</tr>
<tr>
<td>FIT</td>
<td>Finite integration technique</td>
</tr>
<tr>
<td>FKEE</td>
<td>Faculty of Electrical and Electronic Engineering</td>
</tr>
<tr>
<td>FR4</td>
<td>Glass-reinforced epoxy laminate material</td>
</tr>
<tr>
<td>FSS</td>
<td>Frequency selective surface</td>
</tr>
<tr>
<td>GPR</td>
<td>Ground-penetrating radar</td>
</tr>
<tr>
<td>HPBW</td>
<td>Half power beamwidth</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse fast Fourier transform</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IMA</td>
<td>Isolated UWB MIMO antenna</td>
</tr>
<tr>
<td>IMAF</td>
<td>Isolated UWB MIMO antenna with FSS array</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, scientific and medical radio band</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix laboratory software</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-input and multiple-output</td>
</tr>
<tr>
<td>MS Excel</td>
<td>Microsoft Excel</td>
</tr>
<tr>
<td>MWI</td>
<td>Microwave imaging</td>
</tr>
<tr>
<td>OD</td>
<td>Omnidirectional radiation pattern</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal frequency division multiplexing</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed circuit board</td>
</tr>
<tr>
<td>PHMAS</td>
<td>Printed hexagonal monopole antenna side-feed</td>
</tr>
<tr>
<td>PHMAV</td>
<td>Printed hexagonal monopole antenna vertex-feed</td>
</tr>
<tr>
<td>PL</td>
<td>Path length</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RLC</td>
<td>Resistor, inductor, and a capacitor resonant circuit</td>
</tr>
<tr>
<td>Rx</td>
<td>Receiver</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific absorption rate value</td>
</tr>
<tr>
<td>SMA</td>
<td>SubMiniature version A 50 ohm connector</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise power ratio</td>
</tr>
<tr>
<td>SRR</td>
<td>Split ring resonator</td>
</tr>
<tr>
<td>STW</td>
<td>See-through wall</td>
</tr>
<tr>
<td>SVM</td>
<td>Support vector machine</td>
</tr>
<tr>
<td>TE</td>
<td>Transverse electric</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmitter</td>
</tr>
<tr>
<td>UDRP</td>
<td>Unidirectional radiation pattern</td>
</tr>
<tr>
<td>UTHM</td>
<td>Universiti Tun Hussein Onn Malaysia</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-wideband</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector network analyzer</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage standing wave ratio</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide interoperability for microwave access</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless local area network</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless personal area network</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

dB, dBi - Logarithmic scale unit, and Isotropic logarithmic scale unit
S_{11}, S_{22} - Reflection coefficients
S_{21}, S_{12} - Transmission coefficients
cm, cm^2, cm^3 - Centimeter, square centimeter, cubic centimeter are units
mm, mm^2, mm^3 - Millimeter, square millimeter, cubic millimeter are units
GHz - Gigahertz is unit
MHz - Megahertz is unit
Da - Distance between the MIMO antenna elements
Dz - Distance between the antenna and FSS array
Da - Largest dimension of the antenna
Rd - Near-field region
λ - Wavelength
λ_0 - Wavelength of resonance frequency
f, f_0, f_r - Resonant frequency
f_c - Centre frequency
f_l - Lowest frequency
f_H - Highest frequency
Ω, nH, pF - Ohm, nanohenry, picofarad are units
N - Number of articles
ε_r, ε_{reff} - Dielectric constant, Effective dielectric constant
L - Monopole antenna length
W - Monopole antenna width
r - Effective radius of the cylindrical monopole antenna
p - Gap between the ground plane and the patch
k - Constant for the FR4 substrate
Wf - Width of the feed line
H - Substrate thickness
La, Wa - Substrate length and width
S, S_1, S_2 - Patch sides length
a^2 - Patch sides angle
R - The radius of the hexagonal patch
Lf, Wf - Feed line length and width
Lg, Wg - Ground plane length and width
t - Copper patch thickness
Dh - Distance between the edge of the patch and the ground plane
$tan\delta$ - Tangent dielectric loss angle
S_{cpw} - Gap between CPW-fed wire and the ground plane
f_{notch}, f_n - Notched frequency
L_{slot} - Slot’s length
pe - Envelope correlation coefficient
π - Constant, the ratio of a circle’s circumference to diameter
R, L, C - Resistor, inductor, and capacitor
Z_o - 377 Ω free space wave impedance
A_1 and A_2 - Areas of the ground plane and the radiation patch
Z_a - Antenna impedance
L_s - Horizontal length of meander-line strip arms
L_2 - Vertical length of meander-line strip arms
ths - Width of meander-line strip arms
L_{strip} - Total length of meander-line strip arms
T_{p1}, T_{p2}, W_{p1} - T-strip lengths and width
g_{sp} - Gap between the T-strip and the radiator patch
c - Speed of light
s - Spacing between the metal of FSS unit cells
T_{fib} - Substrate thickness of FSS unit cell
D_x, D_y - Physical dimensions width and length of the unit cell
g, L_f - Square ring width, Square ring length
W_{fc}, L_{fc} - Cross-dipole width, Cross-dipole length
n - Constant
ϕ - Phase
\[\beta \quad - \quad \text{Propagation constant of free space} \]
\[\theta \quad - \quad \text{Angle of incidence wave on the FSS unit cell} \]
\[A_{\text{eff}} \quad - \quad \text{Effective angle of incidence wave on the FSS unit cell} \]
\[\Delta x, \Delta y \quad - \quad \text{Step shift of xy scanning plane} \]
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fabrication Process</td>
<td>184</td>
</tr>
<tr>
<td>B</td>
<td>Parametric study of the hexagonal radiation patch</td>
<td>185</td>
</tr>
<tr>
<td>C</td>
<td>Parametric study of notching interfered bands</td>
<td>188</td>
</tr>
<tr>
<td>D</td>
<td>Parametric study of frequency selective surface (FSS)</td>
<td>192</td>
</tr>
<tr>
<td>E</td>
<td>Vector Fitting and SPICE algorithms for equivalent circuit</td>
<td>198</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter presents the research motivation, a short background, the problem statement, the objectives, and the scope of this work. Section 1.1 describes the events and the existing technologies that offer significant motivations to carry out this study. The UWB standard and followed by a short background about implementing UWB systems for microwave imaging (MWI) applications are discussed in Section 1.2 and 1.3, respectively. Describing the general problem, several existing issues, and the research direction to fill a gap are elaborated in Section 1.4. The objectives, aim, scope, and the contributions of this study are described in Sections 1.5, 1.6, and 1.7, respectively. Lastly, Section 1.8 briefly reposts the thesis organisation. The details are depicted in the following sections.

1.1 Motivation

Some horrendous events of attacks, such as the September 11 2001 New York City twin towers attack, 2004 Madrid train attack, and 2007 London car bombings, have generated new security adoption processes across the globe. Hence, as a safety measure, the Schiphol airport has begun scanning passengers' body since 2007 [1]. Safeguarding humans from potential attackers have become a top priority. With various cutting-edge approaches devised by attackers to circumvent security inspection, a strong need is present to perform quality security screening in airports and public transportations [2]. While thousands of strangers arrive and depart every single day through airplanes, international airports are the most critical public
transportation constrictions. Thus, both international and local airports have been supported by state-of-the-art security systems and devices [2].

Typically, the conventional scanners in airports are X-ray machines. Passengers are required to take-off all their belongings at the security terminal of both local and international airports. The checklist includes wallets, handbags, hats, keys, and phones, to name a few. Next, the belongings are arranged in a plastic box and scanned using the X-ray system machine. Laptops, cans, and containers exceeding 100 ml must be removed from the handbags, and arranged in a box to be scanned by X-ray scanner. This process lengthens the time of loading the luggage bags into the airplane and takes up passengers’ time, especially those with short transit trips. Nevertheless, this process is essential because security rules are significant to prevent weapons, such as bombs and handguns, from being carried onto the airplane [3].

Despite the low-resolution display of two-dimensional (2D) images, X-ray poses health risks due to its high ionising radiation towards human tissues [1]. Meanwhile, terahertz radar offers high-resolution images, but its high cost and short distance limit its application at the airports [2].

Airway companies have taken measures by increasing scanner accuracy and time efficiency through enforcement of baggage-screening procedure, but often at the cost of increased waiting time and ticket price [4]. The highlighted concerns had motivated the researcher to develop a modern radar system in the attempt of overcoming these issues that have always remained top security priority. The key solution is by using MWI based UWB system for indoor security purposes [2], which refers to one of the most sought topics in the radar-imaging field. The details of standardisation and regulations of the UWB technology are presented in the next sections.

1.2 UWB standard and regulation

UWB communication uses very narrow RF pulses between the receiver and the transmitter for communication purposes. Short-duration pulses generate extensive bandwidth and have many other advantages, thus are the building blocks for wireless communication. There are many types of waveband signals in a UWB, such as
REFERENCES

157. CST-Microwave-Studio®. from; online: www.cst.com

