OPTIMIZATION PROCESSABILITY OF SS316L USED NATURAL HYDROXYAPATITE FROM WASTE TILAPIA FISH BONES IN METAL INJECTION MOLDING

NAJWA BT. MUSTAFA

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy

Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

FEBRUARY 2019
For My loving husband, MR. MOHD RASHDAN, my sons, MUHAMMAD AMMAR NAUFAL & MUHAMMAD HARRAZ ADWAN, My late father, HJ. MUSTAFA BIN MOHAMED, My beloved mother, HJH. FATIMAH BINTI MOHD NOOR, my siblings, KHAIRUL RIJAL, ZARIR RAMIZ, LEILA SALWA, ZARITH SUFIAH, MOHD SOLEHIEN, MOHAMED NUR IMAN & BALQISH

Thank You for your endless support
ACKNOWLEDGEMENT

In the name of ALLAH S.W.T, The Most Gracious and The Most Merciful, Greeting and Blessing to Prophet Muhammad S.A.W

I would like to express my sincere appreciation to all those who gave me the possibility to complete this research. I am deeply indebted to my supervisor Associate Professor Ts. Dr. Mohd Halim Irwan Bin Ibrahim for his thoughtful insights, stimulating suggestion and encouragement throughout the duration of this research.

I want to thank to my beloved husband, Mr. Mohd Rashdan Bin Ahmad, my sons Ammar Naufal and Harraz Adwan for your understanding, sacrifice and support during this PhD journey. Special thanks to my late father, Haji Mustafa Bin Mohamed, this thesis specially dedicated to you. Your spirits and inspiration are always with me. To my mother, Hajjah Fatimah Binti Mohd Noor and my siblings thank you for your encouragement and warm hugs for all these years. A Million thanks to dedication technician Mr. Shahruil, Mr. Fazlan, Mr. Tarmizi and Mr. Anuar for their support and cooperation during completing the experimental and analysis process. My infinite gratitude also to my family in laws and my fellow friends, Hafizah and Hasliza for your help in making this thesis successfully.

Finally, I would like to express my gratitude and appreciation to MY BRAIN 15 (MY PHD) and Universiti Tun Hussein Onn Malaysia for the financial support and facilities. THANK YOU.
ABSTRACT

Application of waste Tilapia Fish bones is introduced as a Natural Hydroxyapatite (NHAP) powder in metal injection moulding. Feedstock were prepared based on water atomized Stainless steel 316L (SS316L) and combination of NHAP powder bind with Low density Polyethylene (LDPE) and Palm stearin (PS). The results of rheological analysis show feedstocks with 63 and 64 wt.% of powder loading for both 90 wt.% SS316L and 10 wt.% NHAP and 85 wt.% SS316L and 15 wt.% NHAP composites shows a pseudoplastic behaviour. The screening of injection moulding and thermal debinding were conducted by using ANOVA. The significant parameters towards highest density and strength for injection moulding are injection temperature (A), mould temperature (B), injection pressure (C), and injection speed (D). Moreover, the significant parameters for thermal debinding were heating rate (A), temperature (B), dwell time (C), and cooling rate (D). The entire parameters have achieved the confident level above 90% using F-test and any interactions of A×B, A×C, and B×C were omitted since the results were insignificant. Taguchi method and Grey relational analysis was successfully employed for optimising the injection and debinding parameters. The optimisation of injection moulding process revealed the optimum condition for multiple response (density and strength) was injection temperature at 170 °C, mold temperature at 50 °C, 65 % of injection pressure and 60 % of injection speed. The optimisation of solvent debinding discovered the highest density and palm stearin loss. The optimum parameter for multiple condition was 8 hours of immersion time at 40 °C by using hexane in dilution of 15:1 solvent to feed ratio. The extraction process indicates that hexane solution was better compared to heptane and isoctane with respected higher percentages of palm stearin loss. The optimal condition of thermal debinding process was heating rate at 4 °C/min, temperature at 550 °C, 60 minutes of dwelling time and 4°C/min cooling rate and produced good quality brown parts. The final sintered part also shows good mechanical properties and microstructure of SS316L/NHAP parts.
ABSTRAK

Penggunaan serbuk logam keluli tahan karat (SS316L) dengan kombinasi serbuk NHAP yang diuraikan daripada sisa tulang ikan Tilapia telah digunakan sebagai bahan suapan dalam proses penyuntikan pengacuanan logam. Nisbah campuran diantara SS316L dan NHAP ialah 85 wt. % SS316L dan 15 wt. % NHAP dan 90 wt. % SS316L dan 10 wt. %. Berdasarkan keputusan analisis reologi, bahan suapan dengan pembebanan serbuk 63 wt. % dan 64 wt. % menunjukan sifat pseudoplastik. Eksperimen saringan untuk proses pengacuanan suntikan dan penyahikatan terma dilakukan dengan menggunakan keadah ANOVA bagi mengetahui pasti parameter yang signifikan. Keputusan ujian saringan bagi proses pengacuanan suntikan, menunjukkan suhu penyuntikan (A), suhu acuan (B), tekanan penyuntikan (C) dan kelajuan suntikan (D) merupakan parameter yang signifikan. Manakala bagi proses penyahikatan terma, parameter yang signifikan adalah kadar kenaikan suhu (A), suhu pemanasan (B), masa pemanasan (D), dan kadar penurunan suhu (D). Kesemua parameter yang terlibat melepasi aras 90 % aras keyakinan berdasarkan ujian -F dan sebarang interaksi antara AxB, AxC, dan BxC diabaikan kerana tidak signifikan. Kaedah Taguchi dan Kaedah analisis Grey di gunakan untuk mengetahui pasti parameter optimum bagi proses penyuntikan logam dan penyahikatan larutan dan terma. Parameter bagi menghasilkan ketumpatan dan kekuatan jasad hijau tertinggi bagi proses pengacuanan suntikan adalah 170 °C suhu suntikan, 50 °C suhu acuan, 65% tekanan suntikan dengan 60 % kelajuan suntikan Bagi proses pengoptimun penyahikatan larutan, parameter yang optimum bagi ketumpatan dan pengekstrakan Palm stearin ialah penyahikatan selama 8 jam, suhu 40 °C pengekstrakan dalam larutan heksana dan nisbah pelarut terhadap berat sampel adalah 15:1. Seterusnya parameter yang optimum untuk proses penyahikatan terma adalah 4 °C/min kadar kenaikan suhu sehingga 550 °C selama 60 minit dan suhu penurunan ialah 4 °C/min dan menghasilkan jasad perang yang berkualiti. Jasad akhir sinter juga menunjukan sifat mekanikal dan mikrostruktur SS316L/ NHAP yang baik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of study 1
1.2 Problem statement 5
1.3 Objectives 6
1.4 Scopes 7

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 9
2.2 Metal Injection Moulding 9
2.3 Powder in MIM 11
2.4 Stainless steel 316L (SS316L) 13
2.5 Hydroxyapatite 14
 2.5.1 Thermal parameter (Temperature °C) 17
 2.5.2 Method of calcination 20
 2.5.3 Tilapia fish study in Malaysia 21
CHAPTER 3 METHODOLOGY

3.1 Introduction 77
3.2 Materials selection 78
3.3 Sample testing method 80
 3.3.1 Thermo Gravimetric Analysis (TGA) 80
 3.3.2 X-ray Diffraction (XRD) 81
 3.3.3 Scanning Electron Microscopy (SEM) 82
 3.3.4 Transverse rupture test 83
 3.3.5 Density test (MPIF 42) 85
 3.3.6 Hardness 86
3.4 Natural Hydroxyapatite preparation 87
 3.4.1 Ball mill process 88
 3.4.2 Calcination process 88
3.5 Mixing / feedstock preparation 89
3.6 Crushing process 92
3.7 Rheological Test 93
3.8 Injection Molding 94
3.9 Solvent debinding 96
3.10 Thermal debinding 98
3.11 Sintering 100

CHAPTER 4 RESULT AND DISCUSSION 101
4.1 Introduction 101
4.2 Materials characterisation 102
 4.2.1 Critical Powder Volume Concentration (CPVC) 102
4.3 General Natural Hydroxyapatite characterisation 104
 4.3.1 Elemental analysis of sample powder 105
4.4 Binder system characterization 109
4.5 Feedstock characterization 111
4.6 Rheological Analysis of SS316L/NHAP Feedstock 113
4.7 Correlation of feedstock pseudoplastic flow behavior and shear rate 116
4.8 The influence of flow behaviour index (n) at different powder loading and temperature 120
 4.8.1 The influence of powder loading on activation energy (E) 122
 4.8.2 The influence of powder loading on mouldability index (αstv) 127
4.9 Summary of rheological analysis 128
4.10 Injection moulding analysis 128
4.11 Screening experiment: Green density analysis for injection molding parameter by using Analysis of Variance (ANOVA) 129
4.11.1 The effect of injection temperature (A) and mould temperature (B) 129
4.11.2 The effect of injection temperature (A) and injection pressure (C) 133
4.11.3 The effect of mold temperature (B) and injection pressure (C) 135
4.12 Screening experiment: Green strength analysis
for injection moulding parameter by using Analysis of Variance (ANOVA) 138
4.12.1 The effect of injection temperature (A) and mold temperature (B) 138
4.12.2 Effect of injection temperature (A) and injection pressure (C) 141
4.12.3 The effect of mold temperature (B) and injection pressure (C) 144
4.13 The optimisation of metal injection molding
parameters for green parts by using Taguchi method 146
4.13.1 Green density determination (MPIF 42) 146
4.13.2 Green strength determination (MPIF 15) 151
4.14 Optimisation of metal injection molding
with multiple performance characteristics
using Grey relational analysis 155
4.14.1 Grey relational analysis (GRA) 155
4.14.2 Determination of Grey Relational Coefficient
(GRC) and Grey Relational Grade (GRG) for optimum injection parameter 156
4.15 Summary of injection molding 160
4.16 Solvent debinding analysis 161
4.17 Screening experiment 161
4.18 The extraction of palm stearin by using heptane 162
4.18.1 The extraction of palm stearin by using heptane as solvent agent at 40 °C 162
4.18.2 The extraction of palm stearin by using heptane as solvent agent at 45 °C 163
4.18.3 The extraction of palm stearin by using heptane as solvent agent at 50 °C 164
4.18.4 The extraction of palm stearin by using heptane as solvent agent at 60 °C 165
4.19 The extraction of palm stearin by using hexane 166
4.19.1 The extraction of palm stearin by using hexane as solvent agent at 40 °C 166
4.19.2 The extraction of palm stearin by using hexane as solvent agent at 45 °C 167
4.20 The extraction of palm stearin by using isooctane 168
4.20.1 The extraction of palm stearin by using isooctane as solvent agent at 35 °C 169
4.20.2 The extraction of palm stearin by using isooctane as solvent agent at 40 °C 169
4.20.3 The extraction of palm stearin by using isooctane as solvent agent at 45 °C 170
4.21 Optimisation of solvent debinding parameters by using Taguchi method 171
4.21.1 Density determination (MPIF 42) 172
4.21.2 Palm stearin loss determination 175
4.22 Optimisation of solvent debinding with multiple performance characteristics using Grey relational analysis 179
4.23 Morphology of solvent debinding part 183
4.24 Summary of solvent debinding 187
4.25 Thermal debinding analysis 188
4.26 Screening experiment: Brown part density analysis for thermal debinding parameter by using Analysis of Variance (ANOVA) 189
4.26.1 The effect of heating rate (A) and temperature (B) 190
4.26.2 The effect of heating rate (A) and dwell time (C) 191
4.26.3 The effect of temperature (B) and
dwell time (C) 192
4.27 Screening experiment: Brown part strength analysis for thermal debinding parameter by using Analysis of Variance (ANOVA) 193
4.27.1 The effect of heating rate (A) and temperature (B) 193
4.27.2 The effect of heating rate (A) and dwell time (C) 194
4.27.3 The effect of temperature (B) and dwell time (C) 195
4.28 Optimisation of thermal debinding parameters for brown parts by using Taguchi method 196
4.28.1 Brown density determination (MPIF 42) 196
4.28.2 Brown strength determination (MPIF 15) 199
4.29 Optimisation of thermal debinding with multiple performance characteristics using Grey Relational analysis 202
4.30 Morphology of brown part 206
4.31 Summary of thermal debinding 209
4.32 Sintering 210
4.33 The analysis on the sintered part 210
4.34 Morphology analysis of sintered part 212
4.35 Chemical composition/elements of sintered part 214
4.36 The XRD analysis of sintered part 215
4.37 Physical and mechanical properties of the sintered part 217
4.38 Summary of sintering analysis 218
4.39 Overall summaries 219

CHAPTER 5 CONCLUSION AND RECOMMENDATION 220
5.1 Conclusions 220
5.2 Recommendations 222
REFERENCES 223
APPENDICES 236
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Descriptions of water and gas atomized SS316L</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristic of powder and their effects in MIM</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>SS316L element composition</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Calcium containing compounds in calcium phosphate system</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>The effects of temperature difference on the colour of fish bone</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Tilapia production from 2008 to 2013 in Malaysia</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Palm oil: world supply and distribution (thousand metric tons)</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>The trade names, characteristics and typical applications of Polyethylene</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>LDPE properties</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>The properties of a binder system</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>Feedstock formulations (Vol. %) to produce a quality mixture</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>Palm stearin as a binder system and varied from 50 to 80 wt. %</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>contrast and comparison of the granulation and palletization</td>
<td>40</td>
</tr>
<tr>
<td>2.14</td>
<td>Categories of injection moulding parameters</td>
<td>51</td>
</tr>
<tr>
<td>2.15</td>
<td>Description of injection moulding parameters</td>
<td>51</td>
</tr>
<tr>
<td>2.16</td>
<td>Trend of the optimisation parameters of the injection moulding</td>
<td>53</td>
</tr>
<tr>
<td>2.17</td>
<td>Solvent parameter</td>
<td>60</td>
</tr>
<tr>
<td>2.18</td>
<td>Debinding schedule for 316L stainless steel micro parts</td>
<td>61</td>
</tr>
</tbody>
</table>
2.19 Three levels for each variable refer to the maximum and minimum limit that influences sintered density

2.20 Taguchi method L9 (34) orthogonal array

3.1 Combination of (SS316L) and NHAP characteristic

3.2 LDPE properties

3.3 PS properties

3.4 85% SS316L and 15% NHAP

3.5 90% SS316L and 10% NHAP

3.6 Variables indicator for Taguchi methods (injection moulding)

3.7 Taguchi methods with variables (injection moulding)

3.8 Parameter of screening process

3.9 Various parameter of Taguchi methods L9 (34) for solvent debinding process

3.10 Taguchi methods with variables for solvent debinding process

3.11 Various parameter of Taguchi methods L9 (34) for thermal debinding process

3.12 Taguchi methods with variables for thermal debinding process

3.13 Sintering profile

4.1 CPVC after adding oleic acid in 5 minutes interval

4.2 General description of the sample

4.3 Ca/P ratios of sample powder

4.4 Summary of Binder system properties

4.5 The density of feedstock

4.6 Comparison of n, E, η and γ at shear rate 1000 s⁻¹

4.7 Feedstock abbreviation

4.8 Optimisation injection moulding parameter

4.9 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green density of 63_85_15 feedstock

4.10 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green density
4.11 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green density of 63_90_10 feedstock

4.12 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green density of 64_90_10 feedstock

4.13 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green density of 63_85_15 feedstock

4.14 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green density of 64_85_15 feedstock

4.15 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green density of 63_90_10 feedstock

4.16 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green density of 64_90_10 feedstock

4.17 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green density of 63_85_1 feedstock

4.18 ANOVA analyses on mould temperature (B) and Injection pressure (C) influencing the green density of 64_85_15 feedstock

4.19 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green density of 63_90_10 feedstock

4.20 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green density of 64_90_10 feedstock

4.21 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green strength of 63_85_15 feedstock
4.22 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green strength of 64_85_15 feedstock

4.23 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green strength of 63_90_10 feedstock

4.24 ANOVA analyses on injection temperature (A) and mould temperature (B) influencing the green strength of 64_90_10 feedstock

4.25 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green strength of 63_85_15 feedstock

4.26 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green strength of 64_85_15 feedstock

4.27 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green strength of 63_90_10 feedstock

4.28 ANOVA analyses on injection temperature (A) and injection pressure (C) influencing the green strength of 64_90_10 feedstock

4.29 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green strength of 63_85_15 feedstock

4.30 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green strength of 64_85_15 feedstock

4.31 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green strength of 63_90_10 feedstock

4.32 ANOVA analyses on mould temperature (B) and injection pressure (C) influencing the green strength of 64_85_15 feedstock

4.33 Taguchi method L9 (34) for the determination
of green part density 147

4.34 Response table for S/N Values for density 149

4.35 ANOVA table for density analyses 149

4.36 Performance estimation for the optimum parameters for green density performance (characteristic: larger the better) 150

4.37 Confirmation experiment for density 150

4.38 Taguchi method L9 (3)^4 for the determination of green part strength 151

4.39 Response table for S/N values (green strength) 153

4.40 ANOVA table for green strength 154

4.41 Performance estimation for the optimum parameters for green strength performance (characteristic: larger the better) 154

4.42 Confirmation experiment for green strength 154

4.43 Orthogonal Array L9 (3)^4 for green part quality (density and strength) 157

4.44 GRC value for density 157

4.45 GRC value for strength 158

4.46 GRG values for green part quality (density and strength) 158

4.47 GRG values for injection parameter at each level 159

4.48 The optimal parameter for Injection molding process 159

4.49 The percentage of palm stearin loss from 2 hours to 8 hours at 40°C by using heptane 163

4.50 Solvent debinding parameter optimisation 172

4.51 Taguchi Method L9 (3)^4 for the determination of solvent part density. 172

4.52 ANOVA table for density of solvent part 174

4.53 Performance estimation for the optimum parameters for density (characteristic: larger the better) 174

4.54 Confirmation experiment 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.55</td>
<td>Taguchi method $L_9(3^4)$ for Palm stearin loss determination of the solvent part.</td>
</tr>
<tr>
<td>4.56</td>
<td>ANOVA table for palm stearin loss of solvent part</td>
</tr>
<tr>
<td>4.57</td>
<td>Performance estimation for the optimum parameters of palm stearin loss (characteristic: larger the better)</td>
</tr>
<tr>
<td>4.58</td>
<td>Confirmation experiment.</td>
</tr>
<tr>
<td>4.59</td>
<td>Orthogonal Array $L_9(3^4)$ for brown part quality (density and palm stearin loss)</td>
</tr>
<tr>
<td>4.60</td>
<td>GRC value for density of solvent part</td>
</tr>
<tr>
<td>4.61</td>
<td>GRC value for palm stearin loss</td>
</tr>
<tr>
<td>4.62</td>
<td>GRG values for brown part quality (density and palm stearin loss)</td>
</tr>
<tr>
<td>4.63</td>
<td>GRG values for solvent debinding parameters at each level</td>
</tr>
<tr>
<td>4.64</td>
<td>The optimum parameters for solvent debinding Process</td>
</tr>
<tr>
<td>4.65</td>
<td>Percentage of Palm stearin loss</td>
</tr>
<tr>
<td>4.66</td>
<td>Optimisation of thermal debinding parameter</td>
</tr>
<tr>
<td>4.67</td>
<td>ANOVA analyses on heating rate (A) and temperature (B) influencing the brown part density</td>
</tr>
<tr>
<td>4.68</td>
<td>ANOVA analyses on heating rate (A) and dwell time (C) influencing the brown part density</td>
</tr>
<tr>
<td>4.69</td>
<td>ANOVA analyses on temperature (B) and dwell time (C) influencing the brown part density</td>
</tr>
<tr>
<td>4.70</td>
<td>ANOVA analyses on heating rate (A) and temperature (B) influencing the brown part strength</td>
</tr>
<tr>
<td>4.71</td>
<td>ANOVA analyses on heating rate (A) and dwell time (C) influencing the brown part strength</td>
</tr>
<tr>
<td>4.72</td>
<td>ANOVA analyses on temperature (B) and dwell time (C) influencing the brown part strength</td>
</tr>
<tr>
<td>4.73</td>
<td>Taguchi method $L_9(3^4)$ for density determination of the brown part</td>
</tr>
<tr>
<td>4.74</td>
<td>ANOVA Table for density of brown part</td>
</tr>
</tbody>
</table>
4.75 Performance estimation for the optimum parameters of brown density (characteristic: larger the better) 199
4.76 Confirmation experiment 199
4.77 Taguchi method L9 (3)4 for strength determination of the brown part 200
4.78 ANOVA table for brown strength 201
4.79 Performance estimation for the optimum parameters of brown strength (characteristic: larger the better) 202
4.80 Confirmation experiment 202
4.81 Orthogonal Array L9(3)4 for brown part qualities (brown density and strength) 203
4.82 GRC value for brown density 203
4.83 GRC value for brown strength 203
4.84 GRG values for brown part quality; (density and strength) 204
4.85 GRG values for thermal debinding parameter at each level 205
4.86 The optimal parameter for thermal debinding process 206
4.87 Physical and mechanical properties of the sintered part 217
LIST OF FIGURES

2.1 Schematic diagram of Metal injection moulding 10
2.2 Hydroxyapatite, HAP, (Ca_{10}(PO_4)_6(OH)_2) 16
2.3 Black Tilapia in Malaysia 21
2.4 The triglycerides component in palm oil. 25
2.5 Decomposition of palm stearin 26
2.6 Mechanical structure of hydrocarbon ethylene 27
2.7 Rheological characteristics of extruded feedstock at different temperatures 30
2.8 Relationship between viscosity and shear rate at 150,160, 170 and 180 °C 31
2.9 Variation of viscosities against shear rate at various temperatures for palm stearin feedstock 32
2.10 a) excess binder, b) critical binder concentration and, c) voids due to insufficient binders 38
2.11 Type of defects: (a) wrinkles, (b) powder binder separation (c) short shot 55
2.12 The binder is permeating to the component surface through open pores from an interface source in the pore structures during thermal debinding 56
2.13 Hexane; (a) before, (b) after, extraction of RWFO 59
2.14 Defect of; (a) crack, (b) warping 60
3.1 Flow chart of experiment 78
3.2 Particle size analyzer model 79
Fritsch analysette 22 compact
3.3 SEM equipment, Model Hitachi 83
3.4 (a) Universal Tensile Machine
model of Shimadzu AG-1, Japan (b) sample location

3.5 Density Analytical Balance (Model of HR-250AZ)

3.6 Diagram of calcination process

3.7 Low temperature furnace model Protherm

3.8 Process flow of mixing process

3.9 Feedstock mixer model Plastograph Brabender

3.10 Molten feedstock

3.11 Plastic Granulator SLM 50 FY machine

3.12 Feedstock in granules form

3.13 Malvern RH2000 capillary rheometer

3.14 Nissei 21 Horizontal Screw
Injection Molding machine

3.15 Green part

3.16 Argon tube furnace (Model of PTF 14/75/610)

3.17 Thermal debinding/ sintering profile

4.1 Adding oleic acid process

4.2 Critical Powder Volume Concentration for
SS316L/NHAP mixture

4.3 Degradation temperature and weight loss of
NHAP powder and Tilapia fish bones at
temperature 900 °C

4.4 XRD patterns of and Scales powder at different
temperatures

4.5 The graph from the TGA test for LDPE and
palm stearin

4.6 The graph of optimum degradation of LDPE and
palm stearin

4.7 The graph of melting point of LDPE and
palm stearin

4.8 The graph binder burnt out for homogeneity test

4.9 Feedstock SEM observation

4.10 Correlation of viscosity and shear rate at 165 °C

4.11 The correlation between viscosity and temperature for
feedstocks with various powder loadings
4.12 Relationship between viscosity and shear rate for 63_85_15 feedstock 117
4.13 Relationship between viscosity and shear rate for 64_85_15 feedstock 117
4.14 The influences of powder loading on viscosity against shear for 63_90_10 feedstock 118
4.15 The influences of powder loading on viscosity against shear for 64_90_10 feedstock 119
4.16 The influences of powder loading on viscosity against shear for 65_90_10 feedstock 119
4.17 The influences of powder loading on viscosity against shear for 66_90_10 feedstock 120
4.18 Results of melt flow index (n) and powder loading at 165 °C, 170 °C, and 175 °C for all feedstocks 121
4.19 The influences of powder loading on activation energy for 63_85_15 feedstocks 122
4.20 The influences of powder loading on activation energy for 64_85_15 feedstocks 123
4.21 The influences of powder loading on activation energy for 63_90_10 feedstocks 124
4.22 The influences of powder loading on activation energy for 64_90_10 feedstocks 124
4.23 The influences of powder loading on activation energy for 65_90_10 feedstocks 125
4.24 The influences of powder loading on activation energy for 66_90_10 feedstocks 125
4.25 Comparison of activation energy for 90 wt.% SS316L and 10 wt.% NHAP and 85 wt.% SS316L and 15 wt.% feedstock composition 126
4.26 The influences of powder loading on mouldability index at different temperatures 127
4.27 Interaction between injection temperature (A) and mould (B) for the green density of 63_85_15 feedstock 130
4.28 The interaction between injection temperature (A) and mould temperature (B) influencing the green strength of 63_85_15 feedstock
4.29 The optimum configuration to produce the highest density of green part
4.30 The optimum configuration to produce the highest strength of green part
4.31 Contribution percentage for injection moulding parameter via Taguchi Method.
4.32 Plot GRG $\xi (X_0, X_i)$ for parameter A to D
4.33 Contribution percentage for injection moulding parameter via Grey Taguchi method
4.34 The trend of palm stearin percentages loss at 40 °C using heptane from 2 to 8 hours
4.35 The trend of palm stearin percentages loss at 45 °C using heptane from 2 to 8 hours
4.36 The trend of palm stearin percentages loss at 50 °C using heptane from 2 to 8 hours
4.37 The trend of palm stearin percentages loss at 60 °C using heptane from 2 to 8 hours
4.38 The trend of palm stearin percentages loss at 40 °C using hexane from 2 to 8 hours
4.39 The trend of palm stearin percentages loss at 45 °C using hexane from 2 to 8 hours
4.40 The appearance of palm stearin sediment after immersion in hexane solution at 45°C
4.41 The trend of palm stearin percentages loss at 35 °C using isooctane from 2 to 8 hours
4.42 The trend of palm stearin percentages loss at 40 °C using isooctane from 2 to 8 hours
4.43 The trend of palm stearin percentages loss at 45 °C using isooctane from 2 to 8 hours
4.44 Optimum configuration to produce the highest density of solvent part
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.45</td>
<td>The optimum configuration to produce the highest palm stearin loss of solvent part</td>
</tr>
<tr>
<td>4.46</td>
<td>Contribution percentage for solvent debinding Parameter via Taguchi method</td>
</tr>
<tr>
<td>4.47</td>
<td>Plot for GRG $\xi (X_o, X_i)$ for parameter A - D</td>
</tr>
<tr>
<td>4.48</td>
<td>Open-pore developments at 40 °C of extraction temperature after immersed in heptane solution 2 to 8 hours. (a) Green Part (b) 2 hours, (c) 4 hours, (d) 6 hours, (e) 8 hours (f) eds results</td>
</tr>
<tr>
<td>4.49</td>
<td>Palm stearin loss of the binder from the green component when immersed in heptane solution at 40 °C for various extraction time</td>
</tr>
<tr>
<td>4.50</td>
<td>Interaction between heating rate (A) and Temperature (B) for brown part density</td>
</tr>
<tr>
<td>4.51</td>
<td>Interaction between heating rate (A) and Temperature (B) for brown part strength</td>
</tr>
<tr>
<td>4.52</td>
<td>The optimum configuration to produce the highest density of brown part</td>
</tr>
<tr>
<td>4.53</td>
<td>The optimum configuration to produce the highest strength of brown part</td>
</tr>
<tr>
<td>4.54</td>
<td>Plot GRG $\xi (X_o, X_i)$ for parameter A to D</td>
</tr>
<tr>
<td>4.55</td>
<td>Comparison of (a) green part (b) solvent part (c) brown part</td>
</tr>
<tr>
<td>4.56</td>
<td>SEM of green part at 1000 X (a) surface of fracture (b) cross section of green part</td>
</tr>
<tr>
<td>4.57</td>
<td>SEM of solvent part at 1000 X (a) surface of fracture (b) cross section of solvent Part</td>
</tr>
<tr>
<td>4.58</td>
<td>SEM of brown part at 1000 X (a) surface of fracture (b) cross section of brown part</td>
</tr>
<tr>
<td>4.59</td>
<td>Morphology of sample 1 (1250 °C)</td>
</tr>
<tr>
<td>4.60</td>
<td>Morphology of sample 2 (1300 °C)</td>
</tr>
<tr>
<td>4.61</td>
<td>Morphology of sample 3 (1360 °C)</td>
</tr>
<tr>
<td>4.62</td>
<td>EDS mapping of sintered part (1300 °C)</td>
</tr>
<tr>
<td>4.63</td>
<td>Results of XRD dilatometer</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CPVC</td>
<td>Critical Powder Volume Concentrations</td>
</tr>
<tr>
<td>CPVP</td>
<td>Critical Powder Volume Percentage</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of experiment</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>D<sub>10</sub></td>
<td>Distribution at 10 %</td>
</tr>
<tr>
<td>D<sub>50</sub></td>
<td>Distribution at 50 %</td>
</tr>
<tr>
<td>D<sub>90</sub></td>
<td>Distribution at 90 %</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Disperse X-ray</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene Vinyl Acetate</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>GRC</td>
<td>Grey Relational Coefficient</td>
</tr>
<tr>
<td>GRG</td>
<td>Grey Relational Grade</td>
</tr>
<tr>
<td>HAP</td>
<td>Hydroxyapatite</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low Density Polyethylene</td>
</tr>
<tr>
<td>MIM</td>
<td>Metal injection molding</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>NHAP</td>
<td>Natural Hydroxyapatite</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>PIM</td>
<td>Powder injection molding</td>
</tr>
<tr>
<td>PL</td>
<td>Powder Loading</td>
</tr>
<tr>
<td>PL</td>
<td>Polystyrene</td>
</tr>
</tbody>
</table>
REFERENCES

Torsten, H. (2002) Polyethylene glycols (PEGs) and the pharmaceutical industry Fine, Specialty and Performance Chemicals Clariant, Frankfurt, Germany.

