A STRUCTURAL MODEL FOR MITIGATION MEASURES OF CRITICAL COST OVERRUN FACTORS IN HIGHWAY PROJECTS IN SINDH PROVINCE

SAMIULLAH SOHU

A thesis submitted in
fulfillment of the requirement for the award of the
Doctor of Philosophy in Civil Engineering

Faculty of Civil and Environmental Engineering
Universiti Tun Hussein Onn Malaysia

NOVEMBER, 2018
DEDICATION

For my Beloved Parents and Teachers for their prayers and support. For my beloved wife (Shahnila), my daughter (Aamina) and my son (Muhammed Hassan) who supported me in all endeavors.
ACKNOWLEDGEMENT

First of all, I am much more thankful of Allah SWT, for HIS special blessing over me. HE always blessed me very well, although if I spend my life only for thanking of HIS blessing still it is very less effort to be thankful for HIS blessing. All my achievements are become in my way only because of HIM.

Then, I would like to illustrate my heartfelt gratefulness to all those who have contributed in completing this project.

I would like to be thankful of UTHM for giving me such a prestige opportunity to take my Ph.D. degree in this institute, which is a very important step of my professional career and also one of my dreams. It becomes true through the UTHM.

In particular, I am thankful for my supervisors Associate Professor Dr. Hj. Abd Halid bin Abdullah and Dr. Sasitharan Nagapan, for their trust on me. And I am also thankful for their social, technical encouragement and guidance and recommendations. Supervision of my supervisors, their care and their support and comfort always encourage me to producing a supreme output of mine. Without their continuous interest, and motivation, this study would not have been the same as presented here. I am also very much thankful to brother Zaheer Abbas, Muhammad Mujtaba Asad and Qadir Bakhsh Jamali, Ashfaque Ahmed Jhatial and Muhammad Tahir to guide and assist throughout my Ph.D. journey especially for applying structural equation modeling.

I’m thankful to all lecturers, academic staff and non-academic staff of Universiti Tunn Hussein Onn Malaysia for all continuous supporting during my journey. I take this opportunity to extend my heartfelt thanks to my family, siblings and my beloved parents for their sacrifices and prayers.

Last but not the least; I am thankful to my friends, for their positive attitude, support and encouragement.
ABSTRACT

Construction industry plays a major role in improving the socio-economic growth of any country. However, this industry is facing a serious problem of cost overrun globally and particular in Pakistan. Rapid growth in the construction sector in Pakistan has been observed along with many challenges, especially in highway projects. The most critical issues in highway projects are the cost overrun and lack of their mitigation measures. Hence, the objective of this research is to determine the critical factors of cost overrun, its significant mitigation measures and to develop a structural model of significant mitigation measures for critical cost overrun factors. The preliminary survey helped in identifying the critical factors of cost overrun in highway projects. In total, 64 common factors for cost overrun were identified from the literature review. Based on the common factors, a questionnaire was designed and distributed among the 30 selected experts to determine the critical factors of cost overrun. Out of 64 common factors, 24 were reported critical. The pilot study was carried out by developing a semi-structured questionnaire which was distributed among the same 30 construction experts for the purpose of determining the mitigation measures, which resulted in 113 measures. These mitigation measures along with the relevant 24 factors helped in the development of the final questionnaire to further narrow down the significant measures. This finalized questionnaire was distributed among 350 construction experts of highway projects to identify the significant mitigation measures for critical factors of cost overrun. The collected data was further used to develop a structural model for mitigation measures of critical factors of cost overrun by Smart PLS. Performance of the model has moderate explaining power as the predictive relevancy value is greater than 0.13. Significant mitigation measures of these critical factors were determined from the power loading of mitigations measures. This research would be helpful for construction managers in mitigating the relative risk to the project. Thus, it will directly benefit the construction community and contribute in raising the economy of the country.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>VIII</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>XVIII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>XXII</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>XXIII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>XXIV</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem statement 2
1.3 Research questions 3
1.4 Research aim and objectives 4
1.5 Research scope 4
1.6 Significance of the research 5
1.7 Research gap 5
1.8 Thesis layout 6

CHAPTER 2 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Definition of cost overrun

2.2.1 Types of cost overrun

2.2.1.1 Cost escalation
2.2.1.2 Scope creep
2.2.1.3 Risk
2.2.1.4 Estimates

2.3 Cost overrun in construction projects

2.4 Critical factors of cost overrun in other countries

2.4.1 Critical factors of cost overrun in Afghanistan
2.4.2 Critical factors of cost overrun in Cambodia
2.4.3 Critical factors of cost overrun in Denmark
2.4.4 Critical factors of cost overrun in India
2.4.5 Critical factors of cost overrun in Malaysia
2.4.6 Critical factors of cost overrun in Pakistan
2.4.7 Critical factors of cost overrun in Palestine
2.4.8 Critical factors of cost overrun in South Africa
2.4.9 Critical factors of cost overrun in Turkey
2.4.10 Critical factors of cost overrun in Uganda
2.4.11 Critical factors of cost overrun in the United Kingdom
2.4.12 Critical factors of cost overrun in Vietnam

2.5 Factors of cost overrun in highway projects

2.6 Mitigation measures for cost overrun factors

2.7 Theoretical model

2.8 Summary

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research approach
3.3 Research plan

3.4 Data collection process

3.4.1 First stage of quantitative survey

3.4.2 Preliminary survey

3.4.3 Reliability test

3.5 Pilot study

3.6 Data collection for actual survey

3.6.1 Sample size for actual survey

3.6.2 Measurement scale

3.7 Factor analysis

3.8 Structural equation modelling (SEM)

3.9 Model development

3.10 Evaluation of measured model

3.10.1 Statistically validation

3.10.2 Expert validation

3.11 Summary

CHAPTER 4 IDENTIFICATION OF CRITICAL FACTORS OF COST OVERRUN AND ITS MITIGATION MEASURES

4.1 Introduction

4.2 Experts review

4.3 Preliminary survey

4.3.1 Respondents demography

4.3.2 Analysis of preliminary survey

4.3.3 Critical factors of cost overrun

4.3.3.1 Delay in process of payment by client

4.3.3.2 Inadequate planning
4.3.3.3 Client interference 43
4.3.3.4 Poor contract management 43
4.3.3.5 Delay in decision making 43
4.3.3.6 Laws and regulations framework 44
4.3.3.7 Change in scope of project 44
4.3.3.8 Financial difficulties faced by Client 44
4.3.3.9 Policy in bidding tender to the lowest price 45
4.3.3.10 Lack of experience 45
4.3.3.11 Shortage of skilled labour 45
4.3.3.12 Unsuitable construction methods 45
4.3.3.13 Late delivery of equipment’s 46
4.3.3.14 Shortage of workers 46
4.3.3.15 Poor Site management 46
4.3.3.16 Cash flow and financial difficulties faced by contractor 46
4.3.3.17 Frequent design changes 47
4.3.3.18 Inaccurate cost and time estimates 47
4.3.3.19 Quality assurance control 47
4.3.3.20 Late delivery of materials 47
4.3.3.21 Shortage of materials 48
4.3.3.22 Fluctuation in price of material 48
4.3.3.23 Slow information between parties 48
4.3.3.24 Natural disaster 48

4.4 Pilot study analysis 49

4.4.1 Delay in process of payment by owner/client 49
4.4.2 Inadequate planning 50
4.4.3 Owner/client interference 50
4.4.4 Poor contract management 51
4.4.5 Delay in decision making 52
4.4.6 Laws and regulations framework 53
4.4.7 Change in scope of project 54
4.4.8 Financial difficulties faced by owner/client 54
4.4.9 Policy in bidding tender to the lowest price 55
4.4.10 Lack of experience 56
4.4.11 Shortage of skilled labour 56
4.4.12 Unsuitable construction method 57
4.4.13 Late delivery of equipment’s 58
4.4.14 Shortage of workers 59
4.4.15 Poor site management 59
4.4.16 Cash flow and financial difficulties faced by contractor 60
4.4.17 Frequent design changes 61
4.4.18 Inaccurate cost and time estimates 62
4.4.19 Quality assurance control 63
4.4.20 Late delivery of materials 64
4.4.21 Shortage of materials 64
4.4.22 Fluctuation in price of materials 65
4.4.23 Slow information flow between parties 66
4.4.24 Natural disaster 67

4.5 Reliability test for actual survey 67

4.6 Summary 68

CHAPTER 5 SIGNIFICANT MITIGATION MEASURES FOR CRITICAL FACTORS OF COST OVERRUN 69

5.1 Introduction 69
5.2 Actual survey 69

5.2.1 Response rate 70
5.2.2 Organization 70
5.2.3 Respondents experience 71
CHAPTER 6 79

STRUCTURAL MODELLING OF MITIGATION MEASURES FOR
CRITICAL FACTORS OF COST OVERRUN 79

6.1 Introduction 79
6.2 Hypothetical model of critical factors of cost overrun 79
6.3 Mechanism for model analysis 81
6.4 Sample size 82
6.5 Development of PLS model 83
6.6 Running PLS algorithm 88
6.7 Assessment of measured model performance 89
 6.7.1 Individual item reliability 89
 6.7.2 Convergent validity 89
 6.7.3 Discriminant validity 90
 6.7.3.1 Cross loading 91
 6.7.3.2 Average variance extracted 96
6.8 Significant mitigation measures of causative factors 99
 6.8.1 Significant mitigation measure for delay in process of payment by client 99
 6.8.2 Significant mitigation measure for inadequate planning 100
 6.8.3 Significant mitigation measure for client interference 100
 6.8.4 Significant mitigation measure for client interference 101
 6.8.5 Significant mitigation measure for delay in decision making 102
6.8.6	Significant mitigation measure for laws and regulations of frame work	102
6.8.7	Significant mitigation measure for change in scope of project	103
6.8.8	Significant mitigation measure financial difficulties faced by client	103
6.8.9	Significant mitigation measure policy in binding tender to the lowest price	104
6.8.10	Significant mitigation measure for lack of experience	105
6.8.11	Significant mitigation measure for shortage of skilled labour	105
6.8.12	Significant mitigation measure for unsuitable construction methods	106
6.8.13	Significant mitigation measure for late delivery of equipment’s	106
6.8.14	Significant mitigation measure for shortage of workers	107
6.8.15	Significant mitigation measure for poor site management	108
6.8.16	Significant mitigation measure for cash flow and financial difficulties faced by contractor	108
6.8.17	Significant mitigation measure for frequent design changes	109
6.8.18	Significant mitigation measure for inaccurate cost and time estimation	109
6.8.19	Significant mitigation measure for quality assurance control	110
6.8.20	Significant mitigation measure for late delivery of materials	110
6.8.21 Significant mitigation measure for shortage of materials 111
6.8.22 Significant mitigation measure for fluctuation in price of materials 112
6.8.23 Significant mitigation measure for slow information between parties 113
6.8.24 Significant mitigation measure for natural disaster 113

6.9 Structural assessment of model 114
6.9.1 Explanatory power 114
6.9.2 Significant and relevance of the developed model (β and T values) 115
6.9.3 Factor’s relative impact 116
6.9.4 Predictive relevancy 117

6.10 Validation of model from experts 121
6.11 Summary 124

CHAPTER 7 CONCLUSION AND RECOMMENDATION 125
7.1 Introduction 125
7.2 Conclusion of findings 125
7.2.1 Objective 1: To identify the critical causative factors of cost overrun in highway projects of Sindh province 125
7.2.2 Objective 2: To determine mitigation measures of critical causative factors of cost overrun 126
7.2.3 Objective 3: Developing model significant mitigation measure for causative factors of cost overrun 126
7.2.4 Object 4: To validate the structural relationship model from the experts of highway projects 126
7.3 Contribution of study 130
7.4 Recommendation for future study 131

REFERENCES 132
APPENDICES 145
LIST OF PUBLICATIONS 177
VITA 179
LIST OF TABLES

2.1 List of Developed and Developing Countries 11
2.2 Factors of Cost Overrun in Construction Industry 18
2.3 Mitigation Measures for Factors of Cost Overrun 21
2.4 Mitigation Measures for Factors of Cost Overrun 22
3.1 Measurement Scale 32
3.2 Requirements of Evaluation of Reflective Measurement Models 34
3.3 Selection Criteria for Selection of Expert 35
4.1 Cronbach’s Alpha for Preliminary Survey 38
4.2 Demography of Respondents for Preliminary Survey And Pilot Study 39
4.3 Cut-Off Scale 40
4.4 Analysis of Preliminary Survey 40
4.5 Critical Factors of Cost Overrun 42
4.6 Mitigation Measures for “Delay In Process of Payment by Owner/Client” 49
4.7 Mitigation Measures for “Inadequate Planning” 50
4.8 Mitigation Measures for Owner/Client Interference 51
4.9 Mitigation Measures of Poor Contract Management 52
4.10 Delay in Decision Making 52
4.11 Mitigation Measures for Laws and Regulations Framework 53
4.12 Mitigation Measures of Change in Scope of Project 54
4.13 Mitigation Measures for Financial Difficulties Faced by Owner/Client 54
4.14 Mitigation Measures for Policy in Bidding Tender to the Lower Price 55
4.15 Mitigation Measures of Lack of Experience 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16</td>
<td>Mitigation Measures of Shortage of Skilled Labour</td>
<td>57</td>
</tr>
<tr>
<td>4.17</td>
<td>Mitigation Measures of Unsuitable Construction Methods Factor</td>
<td>57</td>
</tr>
<tr>
<td>4.18</td>
<td>Mitigation Measures for Late Delivery Of Equipment’s</td>
<td>58</td>
</tr>
<tr>
<td>4.19</td>
<td>Mitigation Measures of Shortage Of Workers</td>
<td>59</td>
</tr>
<tr>
<td>4.20</td>
<td>Mitigation Measures of Poor Site Management</td>
<td>60</td>
</tr>
<tr>
<td>4.21</td>
<td>Mitigation Measures of Cash Flow and Financial Difficulties Faced by Contractor Factor</td>
<td>61</td>
</tr>
<tr>
<td>4.22</td>
<td>Frequent Design Changes</td>
<td>61</td>
</tr>
<tr>
<td>4.23</td>
<td>Mitigation Measures of Inaccurate Cost and Time Estimation</td>
<td>62</td>
</tr>
<tr>
<td>4.24</td>
<td>Mitigation Measures of Quality Assurance Control</td>
<td>63</td>
</tr>
<tr>
<td>4.25</td>
<td>Mitigation Measures of Late Delivery of Materials</td>
<td>64</td>
</tr>
<tr>
<td>4.26</td>
<td>Mitigation Measures for “Shortage of Materials”</td>
<td>65</td>
</tr>
<tr>
<td>4.27</td>
<td>Mitigation Measures for “Fluctuation of Price of Materials”</td>
<td>65</td>
</tr>
<tr>
<td>4.28</td>
<td>Mitigation Measures for “Slow Information Flow Between Parties”</td>
<td>66</td>
</tr>
<tr>
<td>4.29</td>
<td>Mitigation Measures for “Natural Disaster”</td>
<td>67</td>
</tr>
<tr>
<td>4.30</td>
<td>Cronbach’s Alpha</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Details of Survey Statistics</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Organization</td>
<td>70</td>
</tr>
<tr>
<td>5.3</td>
<td>Results of KMO and Bartlett’s Test</td>
<td>73</td>
</tr>
<tr>
<td>5.4</td>
<td>Classification of Variables</td>
<td>74</td>
</tr>
<tr>
<td>6.1</td>
<td>Parameters of Convergent Validity</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Convergent Validity</td>
<td>90</td>
</tr>
<tr>
<td>6.3</td>
<td>Cross Loading</td>
<td>91</td>
</tr>
<tr>
<td>6.4</td>
<td>Results of Average Variance Extracted</td>
<td>98</td>
</tr>
<tr>
<td>6.5</td>
<td>Significant Mitigation Measures for Delay In Process of Payment by Client</td>
<td>99</td>
</tr>
<tr>
<td>6.6</td>
<td>Significant Mitigation Measures for Inadequate Planning by Client</td>
<td>100</td>
</tr>
<tr>
<td>6.7</td>
<td>Significant Mitigation Measures for Client Interference</td>
<td>101</td>
</tr>
<tr>
<td>6.8</td>
<td>Significant Mitigation Measures for Poor Contract Management</td>
<td>101</td>
</tr>
</tbody>
</table>
6.9 Significant Mitigation Measures For Delay In Decision Making

6.10 Significant Mitigation Measures For Law And Regulations Frame Work

6.11 Significant Mitigation Measures For Change In Scope Of Project

6.12 Significant Mitigation Measures For Financial Difficulties Faced By Client

6.13 Significant Mitigation Measures For Policy In Bidding Tender To Lowest Price

6.14 Significant Mitigation Measures For Lack Of Experience

6.15 Significant Mitigation Measures For Shortage Of Skilled Labour

6.16 Significant Mitigation Measures For Unsuitable Construction Methods

6.17 Significant Mitigation Measures For Late Delivery Of Equipment’s

6.18 Significant Mitigation Measures For Shortage Of Workers

6.19 Significant Mitigation Measures For Poor Site Management

6.20 Significant Mitigation Measures For Cash Flow And Financial Difficulties Faced By Contractor

6.21 Significant Mitigation Measures For Frequent Design Changes

6.22 Significant Mitigation Measures For Inaccurate Cost And Time Estimation

6.23 Significant Mitigation Measures For Quality Assurance Control

6.24 Significant Mitigation Measures For Late Delivery Of Materials

6.25 Significant Mitigation Measures For Shortage Of Materials

6.26 Significant Mitigation Measures For Fluctuation In Price Of Materials

6.27 Significant Mitigation Measures For Slow Information Flow Between Parties
6.28 Significant Mitigation Measures for Natural Disaster 114
6.29 Summary of T- Values 116
6.30 Values of Effects Size (F2) 117
6.31 Values of Q² for Predictive Relevancy 119
6.32 Demography of Respondents for Model Validation 121
6.33 Results of Expert’s Opinion 123
7.1 Model of Mitigation Measures for Critical Cost Overrun Factors 127
LIST OF FIGURES

1.1 Area of Study 5
2.1 Construction of Highway Projects in Sindh 17
2.2 Theoretical Model of Cost Overrun 23
3.1 Research Methodology Flow Chart 27
5.1 Academic Qualification of Respondents 71
5.2 Experience of Respondents 72
6.1 Hypothetical Model 80
6.2 Diagram of PLS-SEM Procedure 82
6.3 Theoretical Model of Causative Factors Along with Mitigation Measures 84
6.4 Figure of Explanatory Values 115
6.5 Value of Predictive Relevancy 118
6.6 Developed Model From PLS-SEM 120
6.7 Final PLS-SEM Model for Mitigation Measures of Causative Factors 121
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Preliminary Survey</td>
<td>145</td>
</tr>
<tr>
<td>B</td>
<td>Pilot Study</td>
<td>149</td>
</tr>
<tr>
<td>C</td>
<td>Significant Mitigation for Critical Factors of Cost Overrun in Highway Projects of Pakistan</td>
<td>155</td>
</tr>
<tr>
<td>D</td>
<td>Questionnaire Form for Model Validation</td>
<td>163</td>
</tr>
<tr>
<td>E</td>
<td>Results of Factor Analysis</td>
<td>166</td>
</tr>
<tr>
<td>F</td>
<td>List of Publications</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

N - Number of Items
\bar{r} - Average inter-correlation among items
G.D.P - Gross Domestic Product
U.K - United of Kingdom
S.P.S.S - Statistical Package for Social Science
PLS-SEM - Partial Least Square Structural Equation Modeling
Csv - Comma Separated Value
AVE - Average Variance Extracted
CR - Composite Reliability
Q2 - Predictive Relevancy
CV Red - Cross Validated Redundancy
CV Com - Cross Validated Community
PKR - Pakistan Rupees
f2 - Effects Size
R2 - Explanatory Power
CHAPTER 1

INTRODUCTION

1.1 Introduction

The construction industry plays an important role in the economic development and modernization of a country. The construction industry is considered as major source of economic growth of any country. The construction industry also improves the quality standard of life by construction of infrastructures such as roads, schools, hospitals and other infrastructures (Al-Emad & Hamid, 2016). Hence, it is fundamentally critical to complete the construction projects within the cost, time and quality parameters. However, the construction industry is a complex nature, fragmented and schedule driven industry, therefore, it is facing a critical problem of cost overrun, low quality, time overrun, construction waste and low productivity etc.

Out of the problems faced by construction industry, cost overrun is a major problem as money is always of high importance (Mahamid & Dmaid, 2013).

The output from the construction industry is a major and integral part of the national output, accounting for a sizeable proportion in the Gross Domestic Product (GDP) of both developed and underdeveloped countries (Jones, 2014). Cost overrun in the construction industry is a universal and regular phenomenon, where only a few projects are completed within the estimated budget (Aljohani, Dagbui & Moore, 2017; Ali & Kamaruzzaman, 2010).

Cost overrun in the construction industry is a problem which causes serious issues in both developing as well as developed countries, though it has more severe impact in developing countries where cost overrun can go beyond 100% of the estimated cost of the project (Vaardini, Karthiyayini & Ezhilmathi, 2016). In addition
to this, it is believed that the construction projects experience an increase in the cost of about 33% on average (Hartley, 2017).

According to Senouci, Ismail & Eldin (2016), 66 construction projects out of 122, faced cost overrun related issues in construction projects of Qatar. A recent study carried out by Yongjian et al., (2013) on the construction projects of Singapore concluded that 60% of projects were affected due to cost overrun. In Jordan, 65% of the construction projects were affected by cost overrun (Sweis, 2013).

Cost overrun is serious and critical issue which badly effects the economy of the Norwegian where cost overrun has faced more than 60% from the approved cost of the projects. Construction of highway projects have faced more cost overrun as compared to other construction projects (Welde & Odeck, 2017). Cost overrun is the main problem in construction projects, as cost is the one of the major concern throughout the project management lifecycle and it can be considered as the driving force for the project success (Aziz, 2013).

Government of Pakistan is not giving importance to construction industry as compared to other industries, although Pakistan’s construction industry contributes greatly toward the GDP and employs about 9% of the total labor force (Farooqui, 2008). Though contributing to 2.405% of total GDP, the construction industry of Pakistan suffers badly due to cost overruns (Keerio et al., 2017). Therefore, it has become imperative to investigate in detail of mitigation measures and most significant mitigation measures for causative factors of cost overrun in highway.

1.2 Problem statement

Employing approximately 2.3 million people and contributing 12% to the overall economic growth, transport is the fourth largest sector in Pakistan (Farooque & Wasti, 2015). According to the report issued by Ministry of Finance (2015), with the deteriorating performance of the Pakistan Railways, the reliance on highways in Pakistan has increased manifolds and now the highways sector carries over 96% of inland freight and 92% of passenger traffic.

Like other developing countries, Pakistan’s construction industry is also facing critical issue of cost overrun (Azhar et al., 2008; Nasir et al., 2011; Chouhadary et al., 2012; Ejaz et al., 2013; Nawaz et al., 2013; Zafar et al., 2016 & Keerio et al., 2017).
According to Azhar et al., (2008), almost every project undertaken in construction industry of Pakistan experiences cost overrun with range of at least 10% of the estimated cost. According to Nawaz et al., (2013), 90% of projects of Pakistan’s construction industry are facing the problem of cost overrun. For Example, International airport of Islamabad has faced cost overrun more than 250% from actual cost (Amer, 2015). It has been reported by Khan (2016), that the construction projects in Sindh province of Pakistan, has been affected by cost overrun. Though cost overrun is prevalent in all types of construction projects however, it is more chronic in highway projects compared to other types of construction projects in Pakistan (Keerio et al., 2017). The highway projects constructed in Sindh have faced more than 100% of cost overrun which adversely impact the economy of Pakistan (Tahir, 2018). It has been reported that highway projects in Sindh province are facing serious issue of cost overrun as compared to other provinces of Pakistan and this cost overrun has affected the GDP of Pakistan (Sajjad, 2018; Keerio et al., 2017).

There are various factors which lead to cost overrun in highway projects. The issue of cost overrun in highway projects can be minimized by determining mitigation for critical cost overrun factors. According to Keerio et al., (2017), there is a need to conduct research work and study on the mitigation measures for cost overrun factors of highway projects in Sindh, Pakistan.

Hence, this research focuses on determining the mitigation measures for critical factors of cost overrun and developing a structural model in representing the significant mitigation measures of overrun for highway projects of Sindh province of Pakistan.

1.3 Research questions

Based on above highlighted problem statement, the following research questions have been formulated for this study:

1. What are the critical factors of cost overrun in highway projects of Sindh province of Pakistan?
2. What are the possible mitigation measures in highway projects of Sindh province?
REFERENCES

Akter, S., Ambra, J., & Ray, P. (2011). Trustworthiness in health information services:

Durdyev, S., Ismail, S., & Bakar, N. A. (2012). Factors Causing Cost Overruns in Construction of Residential Projects; Case Study Of Turkey. *International
Journal of Science and Management, pp. 3–12.

23(October 2010), pp. 37–41.
Godden, b. (2004). Sample size calculation

Mahamid, I., & Dmaidi, N. (2013). Risks Leading to Cost Overrun in Building

Sajjad, A. (2018), Impact of cost overrun in highway projects, Daily Fast Times, May 21, 2018
