CUSTOMER FOCUSED OPTIMAL DESIGN SKILL TRAINING MODULE
FROM THE INFORMATICS PERSPECTIVE

ANIES FAZIEHAN ZAKARIA

A thesis submitted in
fulfillment of the requirement for the award of the
Doctor of Philosophy in Technical and Vocational Education

Faculty of Technical and Vocational Education
Universiti Tun Hussein Onn Malaysia

JANUARY 2020
DEDICATION

My Son,
Karl Zahrin Bin Zulfahmi Arif

Dearest Mama,
Rahanah Abd Rahman
ACKNOWLEDGEMENT

First, I want to thank ALLAH Almighty for giving me the strength and courage to accomplish my goal. HE has been the biggest source of strength for me.

I would like to express my deepest gratitude to my supervisor Dr Johnson Lim Soon Chong. It has been an honor to be his PhD student. I am grateful for all his contributions of time, ideas, and knowledge to make my research experience productive and exciting. Without his guidance, motivation, and endless support it would have been impossible to remain sustainable in the obscure situations.

I would like to thank my fellow doctoral friends for their feedback, cooperation and of course love and friendship. Especially, for all my sisters in Bilik Siswaazah 6.

Thank you to my loving husband, Zulfahmi Arif Bin Halim, whose patience and understanding has supported me throughout my journey.

Last but not the least, I would like to thank my family: my mother, Rahanah Abd Rahman; my father, Zakaria Bin Said and to my brothers; All the Iqmal’s (Sulong, Hakim, Iche, Abe) and sister, Esya for supporting me spiritually throughout writing this thesis and my life in general.

With thanks to those who blew the wind, And those who sailed the ship,
We sailed it tight against the tide, And I shall be forever in your debt

(Zakaria, Anies Faziehan)
ABSTRACT

Design informatics refers to the processing and application of information in the design process. In the case study of Product-Service Bundle (PSB), design analysis has become challenging due to the increasing amount of complex design information. Given such a design complexity, there are challenges in term of technical and educational needs of data-driven design. Therefore, a design skill training module of customer-focused optimal design was proposed. This study was conducted based on four main parts: (a) Part I: The Customer Knowledge Discovery (conjoint analysis and decision tree method); (b) Part II: The PSB Design and Optimisation (multi-objective optimisation technique); (c) Part III: The Design and Development of Training Modules (ADDIE Model) with Experts Validation (n=5); and (d) Part IV: The User Study of Skill Training Module (n=21). As results, in Part I the generated rules for product-service that matching the product and service features were identified. Part II, two case studies that show new PSB pricing reference based on existing offers were illustrated. Then, four modules of customer-focused optimal design training were developed in Part III and the average of expert’s validation score, 70%-85% were obtained which exceeding the suggested acceptable threshold, 70%. Finally, an increment of trainee’s achievement that obtained ‘A’ grade in each training was recorded in Part IV; 23.81%, 28.57%, 38.10%, and 61.90%, respectively. Besides, the frequencies of trainee’s achievement grades were presented based on demographic profiles; (i) working experiences, with (n=3), without (n=13), and training (n=5); (ii) level of skills; basic (n=6), intermediate (n=12), advanced (n=3), respectively. Lastly, the feedback of post-training survey presented good usability rating and feasibility of the suggested training modules. In conclusion, this study provides one of the potential solutions for solving design issues that can be applied in engineering education.
ABSTRAK

Informatik adalah merujuk kepada pemprosesan dan penggunaan maklumat dalam proses reka bentuk. Dalam kajian kes pakej perkhidmatan produk (PSB), analisis reka bentuk sangat mencabar disebabkan oleh peningkatan jumlah maklumat yang kompleks. Selain cabaran itu, terdapat cabaran lain dari segi teknikal dan keperluan pendidikan bagi reka bentuk berkaitan data. Oleh itu, modul latihan kemahiran reka bentuk yang memfokuskan kepada optimum pelanggan telah dibangunkan. Kajian ini dijalankan berdasarkan empat bahagian utama; (a) Bahagian I: Penerokaan maklumat pelanggan (analisis kombinasi dan kaedah keputusan pokok); (b) Bahagian II: pendekatan rekabentuk dan pengoptimuman PSB (teknik pengoptimuman pelbagai objektif); (c) Bahagian III: reka bentuk dan pembangunan modul latihan (Model ADDIE) dan pengesahan kebolehgunaan pakar \((n=5)\); dan (d) Bahagian IV: kajian pengguna terhadap modul yang dicadangkan \((n=21)\). Sebagai hasil kajian, dalam bahagian I, padanan peraturan produk dan elemen perkhidmatan produk telah dikenal pasti. Dalam bahagian II, dua kajian kes yang menunjukkan harga rujukan PSB berdasarkan perbandingan tawaran sedia ada ditunjukkan. Kemudian, empat modul latihan reka bentuk optimum pelanggan telah dibangunkan dan memperolehi purata skor pengesahan kebolehgunaan modul latihan, 70%-85%, dimana skor ini melebihi tahap yang disyorkan, 70%. Akhir sekali, peningkatan pencapaian pelatih yang mendapat gred A dalam setiap latihan direkodkan; 23.81%, 28.57%, 38.10%, dan 61.90%, berasingan. Di samping itu, frekuensi gred pencapaian pelatih dilaporkan berdasarkan profil pelatih (i) pengalaman kerja, ada \((n=3)\), tiada \((n=13)\), dan latihan sahaja \((n=5)\); dan (ii) tahap kemahiran; asas \((n=6)\), pertengahan \((n=12)\), lanjutan \((n=3)\). Kesimpulannya, kajian ini menyediakan salah satu keadah penyelesaian bagi isu reka bentuk yang boleh diaplikasi dalam bidang pendidikan kejuruteraan.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

- 1.1 Introduction 1
- 1.2 Background of Study 3
- 1.3 Problems Statement 8
- 1.4 Research Objectives 10
- 1.5 Research Questions 11
- 1.6 Significance of Study 12
- 1.7 Research Scope 14
- 1.8 Operational Definitions 15

CHAPTER 2 LITERATURE REVIEW

- 2.1 Engineering Design 17
 - 2.1.1 Design Informatics 21
2.1.2 Data-Driven Design 23
2.1.3 Engineering Design Skills 26

2.2 Knowledge Discovery for Analysing Customer Requirements 30
2.2.1 Identifying Customer Requirements 31
2.2.2 Analysing Customer Requirements 33

2.3 Product-Service Bundle (PSB) Design 35
2.3.1 PSB Design Methodologies 38
2.3.2 PSB Design Modelling and Optimisation 43
2.3.3 PSB Pricing Strategies 46
2.3.4 Data Analytics Skills in PSB Design 49

2.4 Technical Vocational Education and Training 50
2.4.1 Teaching and Learning in TVET 54
2.4.2 Vocational and Technical Pedagogy 55
2.4.3 Didactics Approach 58
2.4.4 Engineering Education 59
2.4.5 Relationship of TVET with Engineering Design 62

2.5 Design and Development of Design Skill Training Module 64
2.5.1 Instructional Design Models and Theories 65
2.5.2 Types of Instructional Materials/Modules 70
2.5.3 The Need of Modular Instruction in Technical Education 71
2.5.4 The Fundamental Characteristic of Training Modules 73
2.5.5 Steps in Design and Development of Module 75
2.5.6 Impact of the Module: Assessment and Evaluation 78
2.5.6.1 The impact of the module in term of achievement 79
2.5.6.2 The impact of the module in term of usability testing 80
2.5.6.3 The impact of the module in term of user experience 82
2.5.6.4 Comparison of module and training evaluation 83

2.6 Summary of Literature 85
CHAPTER 3 RESEARCH FRAMEWORK AND METHODOLOGY

3.1 A Design Skills Development from Informatics Perspective for PSB Design: A Framework

3.2 Part I: A Knowledge Discovery Approach for Analysing design information for PSB

3.2.1 Methodology

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.1 Task I: Data Collection</td>
<td>93</td>
</tr>
<tr>
<td>3.2.1.2 Task II: Customer Preference Survey</td>
<td>93</td>
</tr>
<tr>
<td>3.2.1.3 Task III: Product and Service Relationship</td>
<td>94</td>
</tr>
</tbody>
</table>

3.3 Part II: Product-Service Bundle Design Optimisation

3.3.1 Methodology

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1.1 Task I: Data Collection of Product and Service Features</td>
<td>99</td>
</tr>
<tr>
<td>3.3.1.2 Task II: Design and Optimisation</td>
<td>102</td>
</tr>
<tr>
<td>3.3.1.3 Task III: Matching Rules Discovery and Selection</td>
<td>109</td>
</tr>
<tr>
<td>3.3.1.4 Task IV: Decision Making</td>
<td>109</td>
</tr>
<tr>
<td>3.3.1.5 Task V: Determine PSB design skills</td>
<td>110</td>
</tr>
</tbody>
</table>

3.4 Part III: Design and Development of Skill Training Modules

3.4.1 Research Design

3.4.2 Instrument

3.4.3 Methodology

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.1 Task I: Analysis of Training Module</td>
<td>115</td>
</tr>
<tr>
<td>3.4.3.2 Task II: Design of Training Module</td>
<td>116</td>
</tr>
<tr>
<td>3.4.3.3 Task III: Development of Training Module</td>
<td>116</td>
</tr>
</tbody>
</table>
CHAPTER 4 DEVELOPMENT OF CUSTOMER-FOCUSED OPTIMAL DESIGN SKILL TRAINING MODULES

4.1 Analysis
- 4.1.1 Training Module Need Analysis
- 4.1.2 Learning Objectives
- 4.1.3 Targeted User: Selection of Trainee

4.2 Design
- 4.2.1 Layout Design
- 4.2.2 Image and Graphics Selection
- 4.2.3 Media and Material Selection

4.3 Development
- 4.3.1 Guideline and Worksheet
- 4.3.2 Module Content
 - 4.3.2.1 Training I: Customer Knowledge Discovery
 - 4.3.2.2 Training II: Product Service Bundle Design Relationship Discovery
 - 4.3.2.3 Training III: Data Transformation: Convert Decision Tree to Rules Form
 - 4.3.2.4 Training IV: Design Optimisation and Decision Making

4.4 Implementation
- 4.4.1 Time Allocation
- 4.4.2 Venue Layout
- 4.4.3 Lesson Plan
- 4.4.4 Observation/Reflection
CHAPTER 5 RESULTS AND DISCUSSION

5.1 Part I: A Knowledge Discovery Approach for Analysing Design Information for PSB

5.1.1 Product-Service Features

5.1.2 Customer Preference’s Survey

5.1.3 Classification Evaluation

5.1.4 Discussion of Results

5.1.4.1 Type of product and service design information that can be collected

5.1.4.2 Gather customer preferences by given product and service information

5.1.4.3 Analyse the customer preferences to support PSB design decision making

5.1.5 Section Summary

5.2 Part II: Product-Service Bundle Design Optimisation

5.2.1 Optimal Decision for Product-Service Design Pricing Decision

5.2.2 Case I: Designing Service Elements and Pricing with Given Product Category

5.2.3 Matching Rules Discovery and Selection Results

5.2.4 Case II: Product-Service Design based on Customer Preference Knowledge

5.2.5 Discussion of Results

5.2.5.1 Formulate the PSB problem based on the collected PSB design information
CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Summary of Work
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definition of informatics</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Special issues on data related design studies</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of design skills studies</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of common methods for identifying voice of customers</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of PSB System concepts (Manzini & Vezzoli, 2003; Tran & Park, 2014)</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Three categories in PSB system</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Summarisation of pricing decision for PSB design</td>
<td>48</td>
</tr>
<tr>
<td>2.8</td>
<td>Summarisation of TVET challenges</td>
<td>53</td>
</tr>
<tr>
<td>2.9</td>
<td>Summarisation of pedagogy definition</td>
<td>56</td>
</tr>
<tr>
<td>2.10</td>
<td>Didactics and pedagogy</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Comparison of existing instructional design</td>
<td>66</td>
</tr>
<tr>
<td>2.12</td>
<td>Previous studies on ADDIE Model</td>
<td>69</td>
</tr>
<tr>
<td>2.13</td>
<td>Comparison of traditional and modular teaching approach</td>
<td>73</td>
</tr>
<tr>
<td>2.14</td>
<td>Fundamental Characteristic of Modules</td>
<td>74</td>
</tr>
<tr>
<td>2.15</td>
<td>The component of the module</td>
<td>75</td>
</tr>
<tr>
<td>2.16</td>
<td>Aspect of developing physical module (Meyer, 1984)</td>
<td>77</td>
</tr>
<tr>
<td>2.17</td>
<td>Factor and method selection in development module (Rubin & Chisnell, 2008; You et al., 2008)</td>
<td>78</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison between classification and clustering technique</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>Pseudo-code for the C4.5 algorithm used within WEKA</td>
<td>95</td>
</tr>
<tr>
<td>3.3</td>
<td>Selected product and service offering</td>
<td>100</td>
</tr>
<tr>
<td>3.4</td>
<td>Selected products and services parameter limit</td>
<td>102</td>
</tr>
<tr>
<td>3.5</td>
<td>Expert selection criteria</td>
<td>118</td>
</tr>
<tr>
<td>4.1</td>
<td>Industrial expert selection criteria</td>
<td>126</td>
</tr>
<tr>
<td>4.2</td>
<td>Selected Sample</td>
<td>129</td>
</tr>
<tr>
<td>4.3</td>
<td>Design element for PSB skill training module development</td>
<td>130</td>
</tr>
<tr>
<td>4.4</td>
<td>Media and material selection</td>
<td>139</td>
</tr>
</tbody>
</table>
4.5 Example of lesson plan for training I
4.6 Types of Evaluation
5.1 Product and service features and feature values
5.2 Partially content for PSB preference survey
5.3 Generated rules for product-service matching
5.4 Selected products and service offerings’ price parameter for optimisation
5.5 Experimental settings
5.6 Case I: Proposed PSB pricing structure for selected product category to existing offer
5.7 Selected optimised matching PSB design rules
5.8 Case II: Proposed PSB pricing based on customer preference knowledge compared with existing offers
5.9 Design skill to support PSB design
5.10 Experts Profile
5.11 Skill elements required by engineers/designers from experts’ perspective
5.12 Selected design tools and software
5.13 Training module development process using ADDIE Model
5.14 Training module usability score from experts perspective
5.15 Experts’ usability score
5.16 Score and grade
5.17 Gender’s cross tabulation frequency for four training sessions
5.18 Prior skill’s cross tabulation frequency for four training sessions
5.19 Working experience’s cross tabulation frequency for four training sessions
5.20 Post training evaluation
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General product and design development process (Ulrich, 2003)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase of the design activities (Dieter & Schmidt, 2013)</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Integrated product-service design process (Aurich et al., 2010)</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Integrated engineering design skills requirement (Riel et al., 2009)</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Type of modules</td>
<td>71</td>
</tr>
<tr>
<td>2.6</td>
<td>General principle of instructional material design</td>
<td>76</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of literature</td>
<td>86</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall framework of design skill training development to support PSB design</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of methodology for product-service matching</td>
<td>92</td>
</tr>
<tr>
<td>3.3</td>
<td>Design and optimisation methodology</td>
<td>97</td>
</tr>
<tr>
<td>3.4</td>
<td>Chromosome representation</td>
<td>107</td>
</tr>
<tr>
<td>3.5</td>
<td>Proposal of instructional design approach</td>
<td>113</td>
</tr>
<tr>
<td>3.6</td>
<td>Training module design and development</td>
<td>114</td>
</tr>
<tr>
<td>3.7</td>
<td>Methodology of user study for design skill training modules</td>
<td>121</td>
</tr>
<tr>
<td>4.1</td>
<td>Training modules layout design</td>
<td>132</td>
</tr>
<tr>
<td>4.2</td>
<td>Mini table of content for each training module</td>
<td>133</td>
</tr>
<tr>
<td>4.3</td>
<td>Training Module Overview Layout</td>
<td>134</td>
</tr>
<tr>
<td>4.4</td>
<td>Note each training module</td>
<td>135</td>
</tr>
<tr>
<td>4.5</td>
<td>Step-by-step guideline each training module</td>
<td>136</td>
</tr>
<tr>
<td>4.6</td>
<td>Worksheet layout design</td>
<td>137</td>
</tr>
<tr>
<td>4.7</td>
<td>Example of Selected Graphic or Image from Internet (source: https://www.vecteezy.com/free-vector/school-boy)</td>
<td>138</td>
</tr>
<tr>
<td>4.8</td>
<td>Example of graphics selection</td>
<td>138</td>
</tr>
<tr>
<td>4.9</td>
<td>Partially content of training notes</td>
<td>140</td>
</tr>
<tr>
<td>4.10</td>
<td>Partially content of training guidelines</td>
<td>141</td>
</tr>
</tbody>
</table>
4.11 Partially content of training modules 142
4.12 Time allocation for training 145
4.13 Proposed Class Layout 146
5.1 Respondents demographic information 157
5.2 Customer preference for product-service package 158
5.3 Performance accuracy versus confidence factor for C4.5 algorithm 159
5.4 Non-Dominated Pareto Solution Sets for Each Product Category 170
5.5 Trainee’s Achievement 197
5.6 Trainee’s Achievement for Training I 198
5.7 Trainee’s Achievement for Training II 199
5.8 Trainee’s Achievement for Training III 200
5.9 Trainee’s Achievement for Training IV 201
5.10 Average Trainee’s Achievement for Four Training 201
5.11 Feedback score on training usability 207
5.12 Feedback score versus prior skills 208
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSB</td>
<td>Product service bundle</td>
</tr>
<tr>
<td>D^3</td>
<td>Data driven design</td>
</tr>
<tr>
<td>CR</td>
<td>Customer requirement</td>
</tr>
<tr>
<td>VoC</td>
<td>Voice of customer</td>
</tr>
<tr>
<td>CA</td>
<td>Conjoint analysis</td>
</tr>
<tr>
<td>DCA</td>
<td>Discrete conjoint analysis</td>
</tr>
<tr>
<td>SA</td>
<td>Sentiment analysis</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality function deployment</td>
</tr>
<tr>
<td>HoQ</td>
<td>House of quality</td>
</tr>
<tr>
<td>NSGA</td>
<td>Non-dominated genetic algorithm</td>
</tr>
<tr>
<td>ANN</td>
<td>Analytic neural network</td>
</tr>
<tr>
<td>DEA</td>
<td>Data envelop analysis</td>
</tr>
<tr>
<td>EC</td>
<td>Engineering characteristics</td>
</tr>
<tr>
<td>IPA</td>
<td>Importance-performance analysis</td>
</tr>
<tr>
<td>PLM</td>
<td>Product-life management</td>
</tr>
<tr>
<td>NPD</td>
<td>New product development</td>
</tr>
<tr>
<td>RE</td>
<td>Requirement engineering</td>
</tr>
<tr>
<td>RSP</td>
<td>Receiver state parameter</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>TVET</td>
<td>Technical and vocational education training</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-aided engineering</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-aided manufacturing</td>
</tr>
<tr>
<td>ID</td>
<td>Instructional Design</td>
</tr>
<tr>
<td>MOEA</td>
<td>Multi-objective evolutionary algorithm</td>
</tr>
<tr>
<td>MOO</td>
<td>multi-objective optimisation</td>
</tr>
<tr>
<td>IG</td>
<td>information gain</td>
</tr>
<tr>
<td>SMS</td>
<td>Short message system</td>
</tr>
<tr>
<td>ML</td>
<td>Machine learning</td>
</tr>
<tr>
<td>D_{rp}</td>
<td>Device retail price</td>
</tr>
<tr>
<td>D_p</td>
<td>Device price</td>
</tr>
<tr>
<td>D_u</td>
<td>Device up-front</td>
</tr>
<tr>
<td>D_r</td>
<td>Device rebate</td>
</tr>
<tr>
<td>N_c</td>
<td>Number of voice call service</td>
</tr>
<tr>
<td>N_m</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>N_d</td>
<td>Data service quota</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>N_{cr}</td>
<td>Number of additional voice call</td>
</tr>
<tr>
<td>N_{dr}</td>
<td>Additional data service quota</td>
</tr>
<tr>
<td>RS_i</td>
<td>Service fee for each service</td>
</tr>
<tr>
<td>C_c</td>
<td>Charges for a number of minutes call</td>
</tr>
<tr>
<td>N_c</td>
<td>Number of call per minutes</td>
</tr>
<tr>
<td>N_{fr}</td>
<td>Number of free call per minute</td>
</tr>
<tr>
<td>N_d</td>
<td>Charge of Internet data</td>
</tr>
<tr>
<td>N_{dr}</td>
<td>Number of free Internet data</td>
</tr>
<tr>
<td>C_m</td>
<td>Charges for a SMS</td>
</tr>
<tr>
<td>N_m</td>
<td>Number of SMS</td>
</tr>
<tr>
<td>$g(CS_j)$</td>
<td>Pricing function for service category</td>
</tr>
<tr>
<td>$f(CP_j)$</td>
<td>Pricing function for product category</td>
</tr>
<tr>
<td>RS</td>
<td>Service fee for each service</td>
</tr>
<tr>
<td>GD</td>
<td>Generational distance</td>
</tr>
<tr>
<td>HV</td>
<td>Hyper-volume</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Questionnaires Survey</td>
<td>268</td>
</tr>
<tr>
<td>B</td>
<td>Training Module</td>
<td>286</td>
</tr>
<tr>
<td>C</td>
<td>Lesson Plan/ Guideline</td>
<td>317</td>
</tr>
<tr>
<td>D</td>
<td>Expert’s Feedback</td>
<td>323</td>
</tr>
<tr>
<td>E</td>
<td>Documentation</td>
<td>328</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Engineering education is a multi-disciplinary area that has progressively improved into essential teaching, learning and research focus with an increasing number of approaches to support industrial applications. Traditionally, the major discipline-focused areas (e.g., civil, electrical, mechanical and information technology) to multi-disciplinary areas such as computer application in education, engineering entrepreneurship, digitalising and globalisation engineering show promising progress for producing pro-active and highly skilled graduates (Castro et al., 2015). Among the areas of engineering education, design education is considered an emerging sub-field that focused on the educational perspectives that support the engineering design application (i.e., product design, product engineering and manufacturing process). In design education, the key focus is to determine the educational approach on how to learn design. On the other hand, the key point of engineering design is how to technically design products, service and system (Tomiyama et al., 2009). Design problem usually does not match the boundaries of a single discipline (Gericke et al., 2013). As a consequence, designers/engineers are required to possess different skill
from multiple disciplines that can help them in designing better and marketable products and services.

The engineering design process is complicated and complex which requires multi-dimensional effort and skills such as analysis of design goals, understanding operational contexts, assessment of technologies, and developing design team that can support design process (Hughes & Martin, 1998). Several prominent design processes have been proposed, such as systematic design, design process, product development (Pahl & Beitz, 2013; Ulrich & Eppinger, 2003), which commonly focus on the importance of identifying the design problem and analysis design information (e.g. market analysis and identify potential customers). Thus, one of the main challenging issues raised in the engineering design process is to deal with new information and communication technologies. The rapid increase in the amount of published information or design data that are now available to people (i.e. designers, customers, companies) has implications for the current needs of product and service design. The more that information becomes essential in nowadays, the more important it is to establish the field of design informatics (Geng et al., 2010; Bordegoni & Cugini, 2010).

The term, design informatics, has lately started to gain some attention from the various fields such as design disciplines, education and information science. The example of study is that include the approach for discovering customer-focused optimal design in product-service bundle (Zakaria & Lim, 2016). This can be viewed, design informatics as a study area that enables understanding of the design that can be obtained by taking an informed perspective on design activities, which is integrating design and education context. In this case, various of information and resources are required involving identified users needs, translating customer requirements into engineering characteristics, finding matching suitable combination of product and service feature during the design process. Furthermore, all this information and processes need to be transformed into educational practices.

On the other hand, given the challenges in the engineering design process, it
brings to the design education challenges and needs. Firstly, the ability to understand, apply and synthesise the design process is one of the essential skills for designers in solving design problems (Pahl & Beitz, 2013; Ulrich, 2003). The solution to a design problem requires a systematic methodology with different design skills. Previously, the issue related to the design process and design skill development highlights the usefulness for novice training. However, it is reported that the shortage of design skills, no specific training modules with minimal exposure to ‘real-world’ engineering problems in design engineering lead to insufficient product knowledge and incomplete design training (van der Waal et al., 2014). To find a solution for improving design skills training, the traditional design practices and pedagogical approaches need to be improved due to the current industrial demand and technology development. For example, improvement can be the highlight in design contents and instructional pedagogy, and the use of technology (Litzinger et al., 2011; Dym et al., 2005).

1.2 Background of Study

Design informatics refers to the processing and application of the information in the design process (Chiba et al., 2012; Rolstads & Paci, 2013). From engineering design process context, information processing activity allows knowledge discovery for analysis of various combination and interaction of design variables and implements design concepts. Designers can capture and analyse information at every stage of the design process, formulate design problems and also assist in the design evaluation and decision making (McGinley & Dong, 2011; Mcmahon, 2006; Eppinger, 2001). The essential elements of the design informatics approach are the ability to understand information management focusing on computational methods, techniques and applications for the data-driven design that requires several technical skills to help in designing better products and services.

Both engineering design and design education continuously work on finding a better way to research, analyse and creatively respond to design problems that require the use of information from a variety of sources, proficient in design and technical
strategies for problem-solving (McMahon, 2016; Lan et al., 2013). Academicians are persistently responsive to industrial and manufacturing changes by improving the traditional educational approaches such as teaching and learning process, contents, curriculum development and the use of technologies (Telenko et al., 2016; Tomiyama et al., 2009; Dym et al., 2005). To deal with changes in manufacturing and industrial design practices, an improvement of design engineering is remarkable (Cohen & Katz, 2015). One suggested way is preparing future designers with essential technical and design skills of engineering practices (Cohen & Katz, 2015; Banios, 1991). However, teaching engineering education subject matter with latest technologies aimed at presenting a sufficient design knowledge to future designers has become a challenge due to industrial changes in production, distribution, usage of products and services, and social development (e.g. innovations, technologies, data-driven design, competitive marker and customer-driven products).

Previously, one of the better solutions proposed for this issue was to provide the adequate preparation of technical/design skills development for the novice engineers/designers and future technical teachers (Wood et al., 2016; Banios, 1991). Brunhaver et al. (2017) and Lang et al. (1999) supported the idea that skills training development with the integration of industrial design contents can be one of the effective pedagogical solutions to prepare designers who are capable of identifying and solving complex engineering problems. Besides, in design skills training, both technical and non-technical skills are highlighted to improve trainee’s efficiency and design experiences across training and disciplines. For example, the assessment of cognitive design skills proposed by Khorshidi et al. (2014) that emphasised on the high-degree of design thinking skills such as analytical, synthetics, problem formulation and decision making are essential elements for a good design. Design thinking skills consist of potential strategies for solving problems by bringing an understanding of users to technology design (Norman & Klemmer, 2018).

Moreover, the design process consists of complex design tasks (e.g. product planning, conceptual design, detailed design, optimisation, prototyping), and it
requires a systematic methodology for each design task (Eppinger & Ulrich, 2015; Pahl & Beitz, 2013). To develop systematic design methodologies, researchers have recognised the need to exchange information, to store and analyse design knowledge for each design stage, which is necessary for product and service development (Eppinger, 2001; McMahon, 2006). Besides, the use of computing tools in all aspects of design practice especially in analysing design data, design optimisation and in support of designers in knowledge discovery, management and decision making are considered the key elements in design process (Bontempi et al., 2013; McGinley & Dong, 2011). For instance, information management and knowledge management (e.g. database management, information architecture, programming, software applications) are commonly used to ensure smooth management and analysis of the design description, information and knowledge. However, there is a lack of design program or specific training modules that can emphasise the importance of design skill. Specifically, design skills that focused on information and knowledge discovery such as in the assembly, interpretation of research questions into coherent design challenges in a specific context, the use of computing tools techniques (data analytics tools), and programming for physical and software-based applications.

On the other hand, product-service bundle (PSB) design is found to be one of the challenging issues in design informatics studies due to their complex design process and contain multiple aspects of data-related design information that need consideration. PSB design is a design process that highlights the integration of tangible product, and intangible service features to satisfy customer requirements (Geng et al., 2010; Manzini & Vezzoli, 2003; Mont, 2002). Designing PSB requires sufficient design information, suitable design methodology, and also use a data analytics tool to ensure that the service can complement the functional product experiences and created additional values through the entire life cycle of products. Existing studies have discussed a wide variety of PSB design from different perspectives such as information systems, and business management toward the importance of informatics (Lim et al., 2015; Boehm & Thomas, 2013a; Heisig et al., 2010; Allard et al.,
REFERENCES

From skills to educational objectives. In *Proceedings of ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada*.

publishers.

support systems, 54(1), 402–413.

Social Sciences, 16(4), 65–82.

Shih, H. M. (2014). Migrating product structure bill of materials Excel files to STEP

Song, W., & Sakao, T. (2016). Service conflict identification and resolution for design

Cleaner Production, 59, 174–184.

