DESIGN STUDY OF OUTER ROTOR FIELD EXCITATION FLUX SWITCHING MOTOR FOR ELECTRIC VEHICLES

NOR HASNATI BINTI ABDULL PATAS

A project report submitted in partial fulfillment of the award of the Degree of Master of Electric and Electronic Engineering

Faculty of Electric and Electronic Engineering
Universiti Tun Hussein Onn

JULY 2014
Flux switching machines (FSMs) that consist of all flux sources in the stator have been
developed in recent years. They can be categorized into three groups that are Permanent
magnet (PM) FSM, field excitation (FE) FSM and hybrid excitation (HE) FSM. Among
these FSMs, the FEFSM offers advantages of low cost, simple construction and variables
flux control capabilities suitable for various performances. In this project is design study
of outer-rotor field-excitation flux switching motor (FEFSM) with a topology of 12-slot
and 10-pole configuration (12S-10P) with all active parts are located on the stator for
electric vehicle application as a low-cost of non-Permanent Magnet (PM) machine. The
performance of the proposed motor on the initial design and improved design are analysed
based on 2-D Finite element analysis (FEA). The performance of the improvement design
shows that the maximum torque is obtained 118.2165 Nm which is greater than the initial
design that obtained 72.788Nm, whereas the maximum power has achieved about 77.65kW.
ABSTRAK

Mesin pensuisan Fluks (FSMS) yang terdiri daripada semua sumber fluks di pemegun telah dibangunkan sejak tahun-tahun kebelakangan ini. Iannya boleh dikategorikan kepada tiga kumpulan iaitu magnet Kekal (PM) FSM, bidang penguajaan FSM (FE) dan penguajaan hibrid (HE) FSM. Antara FSMS ini, bidang penguajaan FSM (FE) menawarkan kelebihan kos yang lebih rendah, pembinaan yang mudah dan penbolehubah keupayaan kawalan fluks sesuai untuk pelbagai jenis aplikasi. Dalam projek ini adalah kajian reka bentuk luar-pemutar bidang-penguajaan fluks beralih motor (FEFSM) dengan topologi 12-slot dan konfigurasi 10-ruang (12S-10P) dengan semua bahagian-bahagian aktif terletak di pemegun untuk aplikasi kenderaan elektrik kos rendah sebanyak Magnet bukan Tetap (PM) mesin. Prestasi motor yang dicadangkan ke atas reka bentuk awal dan reka bentuk lebih baik dianalisis berdasarkan menggunakan perisian 2-D analisis unsur terhingga (FEA). Prestasi reka bentuk peningkatan menunjukkan bahawa tork maksimum diperolehi 118.2165 Nm yang lebih besar daripada reka bentuk awal yang diperolehi 72.788Nm, manakala kuasa maksimum telah mencapai kira-kira 77.65kW.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS AND ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 4

1.4 Scopes 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Background 5

2.2 Specifications of Flux Switching Machine (FSM) 5

2.3 Permanent Magnet Flux Switching Machine (PMFSM) 6

2.4 Hybrid Excitation Flux Switching Machine (HEFSM) 8

2.5 Field Excitation Flux Switching Machine (FEFSM) 9
CHAPTER 3 METHODOLOGY 14

3.1 Initial Design for 12S – 10P 17
 3.1.1 Geometry Editor 15
 3.1.2 JMAG Designer 24

3.2 Improvement Design for 12S-10P 29

3.3 Design parameter and procedures for improvement
 Of 12S-10P 32

CHAPTER 4 RESULT AND PERMANCES 39

4.1 Initial Design of 12S-10P Outer Rotor FEFSM 39
 4.1.1 FEC Flux linkage at various FEC Current 42
 4.1.2 Flux strengthening 43
 4.1.3 Cogging torque characteristic with no load 44
 4.1.4 Flux line of FEC at no load condition 44
 4.1.5 Flux distribution 47
 4.1.6 Torque versus J_e at various J_a 49
 4.1.7 Torque and power versus speed characteristics 50

4.2 Final improvement design for Outer rotor FEFSM 51
 4.2.1 Load analysis of the final improvement design 52
 4.2.2 Torque and power versus speed 54
 4.2.3 Flux line flow 55

4.3 Summary of Initial and Improvement design of 12S-10P ORFEFSM 57
CHAPTER 5 CONCLUSION

5.1 Conclusion 59

5.2 Future Works 60

REFERENCES 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The design parameter for the proposed ORFEFSM</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Initial and final design improvement of 12S-10P FEFSM</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Initial and final design improvement parameters of 12S-10P Outer rotor FEFSM</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 Classification of flux switching machine (FSMs) 6
2.2 Operation principle at two typical rotor positions for outer rotor 7
2.3 Principle operation of PMFSM 8
2.4 Principle operation of ORHEFSM (a) $\theta_e = 0^\circ$ (b) $\theta_e = 180^\circ$
 more excitation, (c) $\theta_e = 0^\circ$ (b) $\theta_e = 180^\circ$ less excitation 9
2.5 1-phase 8S-4P FEFSM 11
2.6 3-phase 12S-8P segmental rotor 11
2.7 3-phase 24S-10P FEFSM 12
2.8 Principle operation of FEFSM (a) $\theta_e=0^\circ$ and (b) $\theta_e=180^\circ$
 flux moves from stator to rotor (c) $\theta_e=0^\circ$ and (d) $\theta_e=180^\circ$
 flux moves from rotor to stator 13
3.1 Initial proposed design of Outer Rotor of 12S-10P FEFSM 15
3.2 Work flow of experiment implementation for Geometry Editor 16
3.3 Design initial parameter defined as D1 – D9 17
3.4 Sketch the rotor at the layout 18
3.5 Create a region of rotor 18
3.6 Mirror duplication of rotor and radial duplication of 10P of rotor 19
3.7 Draw a fraction of Stator 19
3.8 Create a region of Stator 20
3.9 Mirror duplication of Stator 20
3.10 Radial duplication of Stator 21
3.11 Draw half of Armature Coil 21
3.12 Create a region of Armature Coil 22
3.13 Mirror duplication and radial duplication of armature coil 22
3.14 Draw a fraction of FE Coil 23
3.15 Create a region of FE Coil 23
3.16 Mirror duplication of FE Coil 24
3.17 Mirror duplication and radial duplication of FE Coil 24
3.18 Work Flow of experiment implementation for IMAG Designer 25
3.19 Circuit Implementation 26
3.20 Circuit Implementation for U, V and W Phase 26
3.21 The armature coil number for U phase 27
3.22 The armature coil number for V phase 27
3.23 The armature coil number for W phase 28
3.24 Direction of current for FE Coils Counter Clockwise 28
3.25 Direction of current for FE Coils 29
3.26 Design parameters of Final Improvement of 12S-10P Outer Rotor 30
3.27 Main machine dimensions of the Final Improvement design 12S-10P ORFEFSM 31
3.28 Torque versus stator radius D1 [mm] 33
3.29 Torque versus rotor pole depth D2 33
3.30 Torque versus rotor pole width, D3 34
3.31 Torque versus FEC Slot Depth D6 34
3.32 Torque versus FEC slot width D7 35
3.33 Torque versus armature coils depth D8 35
3.34 Torque versus armature coils width D9 36
3.35 General flow of the design methodology 37
3.36 Simplified design of original 12S-10P Outer Rotor FEFSM (a) initial design (b) improvement design 38
4.1 Initial separate coil setting for armature coil test and FE Coil (12S-10P) 39
4.2 Flux linkage of coil 2, 5, 8 and 11 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Flux linkage of coil 1, 4, 7 and 10</td>
</tr>
<tr>
<td>4.4</td>
<td>Flux linkage of coil 3, 6, 9 and 12</td>
</tr>
<tr>
<td>4.5</td>
<td>All Flux linkage of phase U, V and W</td>
</tr>
<tr>
<td>4.6</td>
<td>U Phase flux linkage at various DC FEC Current density</td>
</tr>
<tr>
<td>4.7</td>
<td>JE Flux Strengthening</td>
</tr>
<tr>
<td>4.8</td>
<td>Cogging Torque of the proposed initial ORFEFSM</td>
</tr>
<tr>
<td>4.9</td>
<td>Flux Lines of the initial design of 12S-10P from FEC, (Je=10 \text{ A/mm}^2)</td>
</tr>
<tr>
<td>4.10</td>
<td>Flux Lines of the initial design of 12S-10P from FEC, (Je=20 \text{ A/mm}^2)</td>
</tr>
<tr>
<td>4.11</td>
<td>Flux Lines of the initial design of 12S-10P from FEC, (Je=30 \text{ A/mm}^2)</td>
</tr>
<tr>
<td>4.12</td>
<td>Flux Distribution of (Je=10\text{A/mm}^2)</td>
</tr>
<tr>
<td>4.13</td>
<td>Flux Distribution of (Je=20\text{A/mm}^2)</td>
</tr>
<tr>
<td>4.14</td>
<td>Flux Distribution of (Je=30\text{A/mm}^2)</td>
</tr>
<tr>
<td>4.15</td>
<td>Torque (Je) at various (Je) of the initial design Outer rotor FEFSM</td>
</tr>
<tr>
<td>4.16</td>
<td>Instantaneous torque profile at (Ja = 30 \text{ Arms/mm}^2, Je = 30\text{A/mm}^2)</td>
</tr>
<tr>
<td>4.17</td>
<td>Torque and Power versus speed characteristic of the initial design FEFSM Outer Rotor</td>
</tr>
<tr>
<td>4.18</td>
<td>Instantaneous torque profile at (Ja = 30 \text{ Arms/mm}^2, Je = 30\text{A/mm}^2)</td>
</tr>
<tr>
<td>4.19</td>
<td>Torque versus (Je) at various (Ja)</td>
</tr>
<tr>
<td>4.20</td>
<td>Characteristics Torque versus FEC current density, (Je) characteristic</td>
</tr>
<tr>
<td>4.21</td>
<td>Flow of the flux</td>
</tr>
<tr>
<td>4.22</td>
<td>(Ja = 30\text{Arms/mm}^2, Je = 10\text{A/mm}^2, T = 47.6613\text{Nm})</td>
</tr>
<tr>
<td>4.23</td>
<td>(Ja = 30\text{Arms/mm}^2, Je = 30\text{A/mm}^2, T = 118.216\text{N})</td>
</tr>
<tr>
<td>4.24</td>
<td>Torque versus (J_e) at maximum (J_a)</td>
</tr>
<tr>
<td>4.25</td>
<td>Average torque of initial and improved design ORFEFSM</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFSM</td>
<td>Permanent Magnet Flux Switching Machine</td>
</tr>
<tr>
<td>FEFSM</td>
<td>Field Excitation Flux Switching Machine</td>
</tr>
<tr>
<td>HEFSM</td>
<td>Hybrid Excitation Flux Switching Machine</td>
</tr>
<tr>
<td>Nd</td>
<td>Neodymium</td>
</tr>
<tr>
<td>Dy</td>
<td>Dysprosium</td>
</tr>
<tr>
<td>Tb</td>
<td>Terbium</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>A.C</td>
<td>Alternate Current</td>
</tr>
<tr>
<td>D.C</td>
<td>Direct Current</td>
</tr>
<tr>
<td>Ja</td>
<td>Armature Current Density</td>
</tr>
<tr>
<td>Je</td>
<td>Field Excitation Current Density</td>
</tr>
<tr>
<td>FSPM</td>
<td>Flux Switching Permanent Magnet</td>
</tr>
<tr>
<td>FEC</td>
<td>Field Excitation Coils</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

The flux switching motor has three distinctive features that make its operation substantially different to that of conventional two phases short pitched switched reluctance motors and other fully pitched motors. Excitation current is supplied to both the field and armature windings constantly throughout the operation of the motor for either rotor alignment position. The field winding is excited constantly with unipolar direct current that does not require switching. The switching of the current direction in the armature winding controls the orientation of the resultant stator flux and therefore to which stator poles the rotor is attracted.

Flux switching machine can be categorized into three groups that are permanent magnet (PM) FSMs, field excitation (FE) FSMs and hybrid excitation (HE) FSMs. Both PMFSM and FEFSM has only PM and field excitation coil (FEC), respectively as their main flux sources, while HEFSM combines both PM and FECs. Among these FSMs, the FEFSM offers advantages of low cost, simple construction and variable flux control capabilities suitable for various performances. [1].

The flux switching motor (FSM) is a combination of the switched reluctance motor and the inductor alternator. A flux is established in the stator of the machine by dc current flowing in the field winding (F). The orientation of the field flux is then simply switched from one set of stator poles to a quadrature set of stator poles by reversing the
polarity of the current in the armature winding. The flux switching motor is unusual in using this principle for an electric motor.

The Outer rotor type has been the topic of much interest and research. In application with high torque requirement an Outer rotor design has several advantages compared to an inner rotor one [2]. Regarding the inner rotor design, the air gap radius is limited by the space needed for the coils inside the stator and furthermore by the cooling inside the housing surrounding the laminations. The outer rotor design has the benefits that coil and cooling can be placed near the shaft, increasing the possible air gap radius [2].

1.2 Problem Statement

With increase in world population, demands toward vehicles for personal transportation have increased dramatically in the past decade. However, one of the serious problems associated with ever-increasing use of personal vehicles is the inevitable emissions which contribute to global warming. The conventional internal combustion engine (ICE) vehicles are the main contributors to this problem. According to the report in 2008 [3], seven per cent of global carbon dioxide (CO\(_2\)) emissions in year 2000 come from vehicles. The global road transport emissions are expected to keep rising proportional with the economic growth and it is projected to double by the year 2050. Because some environmental problems, such as the greenhouse effects are directly related to vehicle emissions, government agencies and organizations have developed more stringent standards for fuel consumption and emissions.

Besides, with growing concerns over our environment, more and more automakers, governments and customers think that the electric vehicles are the future aim and personal target. While both A.C. and D.C. motors serve the same function of converting electrical energy into mechanical energy, they are powered, constructed and controlled differently [4]. The speed of a D.C. motor is controlled by varying the armature winding’s current while the speed of an A.C. motor is controlled by varying the frequency, which is commonly done with an adjustable frequency drive control [5].
When using the DC motor it has many disadvantages. The overwhelming disadvantages to DC brushed machines (both series wound and other types) are the brushes themselves. Brushes ride on the commutator of the motor’s armature (the part of the motor that turns) and form a rotary switch that switches high currents to various sections of the armature coils. The mechanical nature of this rotary switching of high power produces considerable electrical arcing and also mechanical wear of the carbon brushes and the copper segments of the commutator. This arcing can ignite flammable vapors if they are present around the motor. Although this condition is generally unlikely, the possibility of such ignition usually excludes brushed motors from commercially manufactured vehicles. In contrast, an AC induction motor, which has no brushes, completely eliminates this risk.

In other circumstances, an increase in annual usage of rare-earth magnet have increased the price of rare-earth metals not only Neodymium (Nd) but also Dysprosium (Dy) and Terbium (Tb) which are indispensable to provide the rare-earth magnet with high coercivity as the additives. According to the report released by Mineral Resource Information Centre affiliated to Japan Oil, Gas and Metals National Corporation, a future prospect was summarized such that the production amount of Nd_2Fe_14B would reach at 1,500 tons only in HEV applications in 2011 and the corresponding usage of 70 tons Dysprosium would be serious problem from the viewpoints of cost, security and undersupply. Therefore, the continuous research and development of permanent magnet machines with less or no rare-earth materials would be very important.

To overcome this problem, this project is presents to design and optimization of Outer Rotor Field Excitation Flux Switching Motor for Electrical Vehicles. This research deals with design and optimization of the proposed 12S – 10P outer rotor field excitation flux switching motor for electric vehicle applications with no permanent magnet proposed.
1.3 Objectives

The objectives of this project is

i) To design the Outer Rotor Field Excitation Flux Switching Motor for Electrical Vehicles application with 12S-10P

ii) To analyse the performances of the design motor under no load, load, torque and power

iii) To improve the initial design 12S-10P until the target performances are achieved.

1.4 Scopes

i) This project is design by using JMAG Design Version 13.0 software.

ii) The designed is target power and torque is setting respectively 10kW and 78Nm/80kg for improvement design.

iii) The current Armature Coil Current, I_a is set 360A, while the limit of both armature current density, J_a and FEC current density, J_c is set to 30 A/mm2
CHAPTER 2

LITERATURE REVIEW

2.1 Background

The concept of flux switching permanent magnet (FSPM) has published in the 1950s. Over the last ten years, many novel and new FSMs topologies have been developed for various applications, ranging from low cost domestic appliances, automotive, wind power, aerospace, and etc [6].

2.2 Classifications of Flux Switching Machine (FSM)

Generally, the FSMs can be categorized into three groups that are permanent magnet flux switching machine (PMFSM), field excitation flux switching machine (FEFSM), and hybrid excitation flux switching machine (HEFSM). Both PMFSM and FEFSM has only PM and field excitation coil (FEC), respectively as their main flux sources, while HEFSM combines both PM and FEC as their main flux sources. Fig.2.1 illustrates the general classification of FSMs
2.3 Permanent Magnet Flux Switching Machine (PMFSM)

The permanent magnet flux-switching machines (PMFSM) have a short history and have been studied for several decades. And is a relatively new category of electric machines. The basic model of PMFSM was described in [7], where Rauch and Johnson proposed a new type of motor with permanent magnets placed in the stator. Generally, such machines have a salient pole rotor and the PMs which are housed in the stator. The PMFSM is very similar to the doubly salient permanent magnet (DSPM) machine or to the flux reversal machine (FRM) [8] [9].

However, conventional PMFSMs have a relatively poor flux weakening performance due to constant magnetic flux that required armature winding current control to operate in the flux weakening region. By applying negative d-axis current, the PM flux can be counteracted hence reducing the magnetic flux density. However, the disadvantages of increase in copper loss which significantly reduce the efficiency, and possible irreversible demagnetization of the PM are difficult to overcome. To provide further attractive characteristics, a new structure of 12S-10P PMFSM with additional field excitation coil (FEC) has been proposed [10].

The basic operation principle of the outer-rotor PMFS machine is illustrated as in Fig 2.2. The upper part is the laminated rotor similar to that of the SR machine. The lower part is the stator, where the PM and the armature winding are located. The PM is inset between two stator poles, and establishes a self-excited flux with a fixed direction within itself. In Figure 2.2 (a), the two rotor poles align with the two stator teeth which
are embraced by a concentrated winding coil. The PM flux which is linked in the coil goes out of the coil and into the rotor pole. When the rotor moves to the left, the rotor pole leaves the current stator pole and aligns with the next stator tooth which belongs to the same coil, as shown in Figure 2.2 (b). As the rotor moves, both the magnitude and polarities of the flux-linkage in the windings will vary accordingly [11].

Fig. 2.2 : Operation principle at two typical rotor positions for outer rotor

The general operating principle of the PMFSM is illustrated in Fig. 2.3, where the black arrows show the flux line of PM as an example. From the figure, when the relative position of the rotor poles and a particular stator tooth are as in Fig. 2.3(a), the flux-linkage corresponds to one polarity. However, the polarity of the flux-linkage reverses as the relative position of the rotor poles and the stator tooth changes as shown in Fig. 2.3(b), i.e., the flux linkage switches polarity as the salient pole rotor rotates. In the conventional PMFSM, the stator copper area is significantly reduced since both the PMs and armature coils are housed in the stator with high PM volume employed.
2.4 Hybrid Excitation Flux Switching Machine (HEFSM)

Hybrid excitation flux switching machines (HEFSMs) are those which utilize primary excitation by PMs as well as DC FEC as a secondary source. Conventionally, PMFSMs can be operated beyond base speed in the flux weakening region by means of controlling the armature winding current. By applying negative d-axis current, the PM flux can be counteracted but with the disadvantage of increase in copper loss and thereby reducing the efficiency, reduced power capability, and also possible irreversible demagnetization of the PMs. Thus, HEFSM is an alternative option where the advantages of both PM machines and DC FEC synchronous machines are combined. As such HEFSMs have the potential to improve flux weakening performance, power and torque density, variable flux capability, and efficiency which have been researched extensively over many years [12]. However, Hybrid Excitation FSM has more complicated design compare than permanent magnet FSM and Field Excitation FSM.

The inner stator consists of the armature windings, followed by the FECs in the middle layer, while the PMs are placed in outer stator as discussed in [13] [14]. However, the machine has low torque density and long end winding for the DC FECs, which overlaps the armature windings, and increase copper loss.

The operating principle of the proposed Outer Rotor HEFSM is illustrated in Fig. 2.4. The single piece of rotor that makes the motor more robust similar to SRM is
shown in the upper part, while the stator that consists of PMs, FECs, and armature coils are located in the lower part. The PM and FEC are placed between two stator poles to generate excitation fluxes that create the term of “hybrid excitation flux”. Fig. 2.4 (a) and (b) demonstrate the flux generated by PM and FEC flow from the stator into the rotor and from the rotor into the stator, respectively, to produce a complete one flux cycle. The combined flux generated by PM and FEC established more excitation fluxes that are required to produce higher torque of the motor. When the rotor moves to the right, the rotor pole goes to the next stator tooth, hence switching the magnitude and polarities of the flux linkage. The flux does not rotate but shifts clockwise and counter clockwise in direction with each armature current reversal. According to Figs. 2.4 (c) and (d), only the PM flux flows from the stator into the rotor and from the rotor into the stator, respectively, while the FEC flux is only circulating on its particular winding slots. This condition establishes less excitation flux and generates less torque [15].

Fig. 2.4: Principle operation of ORHEFSM (a) $\theta_e = 0^\circ$ (b) $\theta_e = 180^\circ$ more excitation, (c) $\theta_e = 0^\circ$ (b) $\theta_e = 180^\circ$ less excitation
2.5 Field Excitation Flux Switching Machine (FEFSM)

The concept of the FEFSM involves changing the polarity of the flux linking with the armature coil windings, with respect to the rotor position. The design principle is explained in [16], and the single-phase 8S-4P FEFSM has achieved higher output power density and much higher efficiency when compared with the induction machine (IM). However, the 1-phase FEFSMs suffer with problems of low starting torque, large torque ripple, fixed rotating direction, and overlapped windings between armature coil and FEC.

To improve the performances, a 3-phase 12S-8P with segmental rotor and 24S-10P FEFSMs have been developed as shown in Figs. 2.6 and 2.7, respectively. For 12S-8P FEFSM, segmental rotor is used to provide a clear magnetic path for conveying the field flux to adjacent stator armature coil following the rotor rotation. This design gives shorter end windings than the toothed-rotor structure which is associated with overlapping coils. There are significant gains with this arrangement as it uses less conductor materials and also can improve the overall machine efficiency [17]. Furthermore, the 24S-10P FEFSM is redesigned from the 24S-10P PMFSM in which the PM is removed from the stator and half of the armature coil slots in the upper layer are placed with the FEC windings [18]. In contrast with alternate flux polarities from adjacent PM of 24S-10P PMFSM, the FEC in this machine is arranged with a sole polarity of DC current source. Since the adjacent DC FECs are isolated as shown in red circle in Fig. 2.7, the total flux generation is limited and thus reducing the performances.
Fig. 2.5: 1-phase 8S-4P FEFSM.

Fig. 2.6: 3-phase 12S-8P segmental rotor
Fig. 2.7: 3-phase 24S-10P FEFSM

The operating principle of the FEFSM is illustrated in Fig. 2.8. Fig. 2.8 (a) and (b) show the direction of the FEC fluxes into the rotor while Fig. 2.8 (c) and (d) illustrate the direction of FEC fluxes into the stator which produces a complete one cycle flux. Similar with PMFSM, the flux linkage of FEC switches its polarity by following the movement of salient pole rotor which creates the term “flux switching”. Each reversal of armature current shown by the transition between Fig. 2.8 (a) and (b), causes the stator flux to switch between the alternate stator teeth. The flux does not rotate but shifts clockwise and counterclockwise with each armature-current reversal. With rotor inertia and appropriate timing of the armature current reversal, the reluctance rotor can rotate continuously at a speed controlled by the armature current frequency. The armature winding requires an alternating current reversing in polarity in synchronism with the rotor position. For automotive applications the cost of the power electronic controller must be as low as possible. This is achieved by placing two armature coils in every slot so that the armature winding comprises a set of closely coupled (bifilar) coils [19].
Fig. 2.8: Principle operation of FEFSM (a) $\theta_e=0^\circ$ and (b) $\theta_e=180^\circ$ flux moves from stator to rotor (c) $\theta_e=0^\circ$ and (d) $\theta_e=180^\circ$ flux moves from rotor to stator

Overview of various FSM, design and performance features, various machine topologies, variable flux capability as well as their relationships with doubly-salient PM machines and flux reversal PM machines are also been discussed in [20]. The advantages of FSM compared than Induction Motor, Synchronous motor, Switch reluctance motor are listed below

i. Simple and robust rotor structure suitable for high speed applications

ii. Easy to manage magnet temperature rise as all active parts are located in the stator.

iii. Flux focusing / low cost ferrite magnets can also be used.

iv. Sinusoidal back-emf waveform which is suitable for brushless AC operation.
CHAPTER 3

METHODOLOGY

3.1 Initial Design for 12S-10P

In this project, Outer Rotor Field Excitation Flux Switching Motor (ORFEFSM) for Electrical Vehicles application with 12S-10P are design by using J MAG Design Version 13.0 released by Japan research Institute is used as 2D-FEA solver in design. The project implementation is divided into two parts that are Geometry Editor and J MAG Designer. Geometry editor is used to design each part of motor separately such as rotor, stator, armature coil and permanent magnet (PM) while the condition setting and simulation are developed by using J MAG Designer. J MAG is simulation software for development and design of electrical devices and drive motors for electric vehicles. The machine configuration and dimensions are illustrated in Fig. 3.1.
Fig. 3.1: Initial proposed design of Outer Rotor of 12S-10P FEFSM

3.1.1 Geometry Editor

The design requirements, restrictions and specifications for proposed ORFEFSM is 12 slot and 10 poles. The corresponding electrical restrictions armature coils current is 360A respectively, while the limit of both armature current density, J_a and FEC current density, J_e is set to 30 A/mm².
In this design study, the motor parameters are divided into two groups, namely, those related to stator iron core and rotor iron core. On the stator iron core part, it is divided into two components which are the FEC slot shape and armature slot shape. The rotor parameters involved are the stator radius \(D_1 \), rotor pole depth \(D_2 \), and rotor pole arc width \(D_3 \). The distance between airgap and rotor is \(D_4 \), Air slot \(D_5 \), while for the FEC slot parameters are FEC slot depth and FEC slot width, \(D_6 \) and \(D_7 \) respectively. Finally, the armature coil parameters are armature coil slot depth \(D_8 \) and the armature coil slot width \(D_9 \). The motor design parameters, from \(D_1 \) to \(D_9 \) are demonstrated in Fig. 3.3. Based on the motor parameters identified, the deterministic design optimization method is used and implemented using 2-D FEA solver to obtain the optimal performances of the proposed motor. In this study, the initial design parameters of the proposed ORFEFSM are depicted in Table 1.
Fig. 3.3: Design initial parameter defined as D1 – D9

Table 3.1: The Design Parameter for the proposed ORFEFSM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Stator radius</td>
<td>111</td>
</tr>
<tr>
<td>D2</td>
<td>Rotor Pole depth (mm)</td>
<td>9.2</td>
</tr>
<tr>
<td>D3</td>
<td>Rotor pole arc width (˚)</td>
<td>11</td>
</tr>
<tr>
<td>D4</td>
<td>Distance between airgap and rotor (mm)</td>
<td>0.8</td>
</tr>
<tr>
<td>D5</td>
<td>Air slot (mm)</td>
<td>30</td>
</tr>
<tr>
<td>D6</td>
<td>FEC slot depth (mm)</td>
<td>25</td>
</tr>
<tr>
<td>D7</td>
<td>FEC slot width (mm)</td>
<td>4.125</td>
</tr>
<tr>
<td>D8</td>
<td>Armature coil slot depth (mm)</td>
<td>29</td>
</tr>
<tr>
<td>D9</td>
<td>Armature coil slot width (mm)</td>
<td>4.125</td>
</tr>
</tbody>
</table>

To sketch the geometry of rotor, we firstly draw 90˚/ half rotor pole as shown in Fig 3.4 by following the parameter at Table 1 by using geometry editor software.
Fig. 3.4: Sketch the rotor at the layout

The other part of the rotor can be finish by using the toolbar at the geometry editor software. Then create the region as shown Fig. 3.5.

Fig. 3.5: Create a region of rotor

After finish the region, then mirror copy the region to make one rotor pole by using the region mirror copy toolbar as shown in Fig. 3.6. Use region radial pattern toolbar to make the 10 Pole of rotor as shown in Fig 3.6.
Fig. 3.6: Mirror duplication of rotor and radial duplication of 10P of rotor

For the stator design, initially determine the parameters of the stator. Draw 90°/half of the stator slot as shown in Fig.3.7.

Fig. 3.7: Draw a fraction of Stator
Repeat the step of rotor drawing to complete the stator drawing structures. Refer Fig. 3.8

Fig. 3.8: Create a region of Stator

Fig. 3.9: Mirror duplication of Stator
Fig. 3.10: Radial duplication of Stator

After that, to complete the drawing of armature coil by referring to Fig. 3.11 until Fig 3.13 respectively.

Fig. 3.11: Draw half of Armature Coil
Fig. 3.12: Create a region of Armature Coil

Fig. 3.13: Mirror duplication and radial duplication of armature coil

Repeat the step of armature coil drawing to complete the field excitation (FE) Coil drawing structures. Refer Fig. 3.14 until Fig. 3.17.
Fig. 3.14: Draw a fraction of FE Coil

Fig. 3.15: Create a region of FE Coil
3.1.2 JMAG Designer

In JMAG Designer, by entering the geometry template, materials, winding, and drive conditions as parameters, we obtain the induced voltage constant, torque constant, inductance properties, current vs. torque properties, revolution speed vs. torque properties, iron loss/copper loss properties, etc. in a split second. For this project, we start to update the model in JMAG Designer windows. Set the materials for each part of...
REFERENCES

