PERFORMANCE AND EMISSIONS CHARACTERISTICS OF ALTERNATIVE BIODIESEL FUEL ON 4-STROKE MARINE DIESEL ENGINE

RIDWAN SAPUTRA BIN NURSAL

A thesis submitted in partial fulfilment of the requirement for the award of the Master of Engineering (Mechanical)

Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

JULY 2015
Special dedicated

to my beloved mother, late father and wife
ACKNOWLEDGEMENT

“Bismillahir Rahmanir Raheem”, In the name of Allah, Most Gracious, Most Merciful.
First of all, an utmost thankful and praise to Allah subhana wata’alaa for His mercy,
bounties and helps, granting me strengthens and perseverance hence my research has
been finished excellently.

In preparing this thesis, I was in contact with many people whom I wish to
acknowledge for their dedication. In particular, I wish to express my sincere thanks and
appreciation to my supervisor, Dr. Amir Khalid for his knowledge sharing,
encouragement, guidance, advices and motivation. Without his assistance and interest,
this thesis would not have been the same as presented here.

My honest gratitude and appreciation also goes to Engr. Zakiman Zali, Head of
R&D unit of Marine Engineering Department, Ungku Omar Polytechnic for his
immeasurable support and assistance during completing my research works and also to
my group members, Engr. Syahrunniza Abd. Hadi and Mr. Ahmad Syukri Ahmad
Tajuddin for their greatest teamwork and cooperation along completing the research
project. Not forgotten a special thanks to Mr. Khuzaifah Mohamad from PETRONAS
Melaka Refinery and Mr. Hakimi from SIRIM Berhad Shah Alam for their helps,
cooperation and providing me essential information during my research progress.

An utmost grateful and appreciation to my beloved wife, Siti Maslinda Musa for
her highest support, encouragement and patience, my beloved mother, Hajah Virda
Ariani Binti Oesman for her support, motivation and prayers and my siblings for their
moral support for me in order to accomplish this project and my studies.

Besides, a lot of thanks to all my lecturers, colleagues and friends who are
unnamed here either were involved directly or indirectly for moral support,
encouragement, giving criticism and suggestion. Finally, I wish to thank my Master in
Mechanical Engineering course friends for the joyful moment we have shared throughout
our university study. They have made my studies very interesting and unforgettable.
ABSTRACT

Alternative fuels for diesel engines have become increasingly important due to several socioeconomic aspects, imminent depletion of fossil fuel and growing environmental concerns. Global warming concerns due to the production of greenhouse gases (GHGs) such as carbon dioxide (CO₂) as results from internal combustion engine have seen as one of major factor the promotion of the use of biofuels. Therefore, the use of biodiesel fuel (BDF) as an alternative for fossil diesel (DSL) is among the effective way to reduce the CO₂ emission since it is classified as green and renewable energy. However, it is acknowledged that the use of BDF is restricted due to loss of efficiency and long term problems upon the engine. Hence, a study focussed on investigating the effects of BDF derived from crude palm oil (CPO), jatropha curcas oil (JCO) and waste cooking oil (WCO) blended with DSL at various blending ratio on engine performance and exhaust gas emissions has been performed. This experimental test was done using a small 4-stroke marine diesel engine which operates through engine speeds stimulated at 800, 1200, 1600 and 2000 rpm under 0, 50 and 90% dynamometer loads integrated with emission gas analyser that attached to the exhaust pipeline. As results of experimental investigations, the increment in performance of torque, brake power, brake thermal efficiency (BTE) and brake mean effective pressure (BMEP) while decrease in brake specific fuel consumption (BSFC) has been observed for CPO and JCO fuels comparative to DSL. Meanwhile a contrariwise outcome was obtained for WCO fuels. In conjunction, CPO and JCO promotes lower carbon monoxide (CO) emissions but signified higher nitrogen oxides (NOx), carbon dioxide (CO₂) and hydrocarbon (HC) emissions compared to DSL. Apart, WCO promotes lower CO, CO₂ and HC emissions but signified higher NOx emissions compared to DSL. It can be concluded that BDF is useable in diesel engines without engine modifications. The outcomes of this study is significantly contributed as a guidance and reference to the local authority in order to evaluate and select the suitable and optimum BDF for development of policies, regulations and standard.
ABSTRAK

Bahan api alternatif bagi enjin diesel semakin mendapat perhatian disebabkan faktor-faktor sosioekonomi, bahan api fosil yang semakin berkurangan dan meningkatnya kesedaran terhadap pentingan alam. Pemanasan global akibat penghasilan gas rumah hijau seperti karbon dioksida (CO\textsubscript{2}) daripada enjin pembakaran dalam merupakan faktor besar yang mendorong penggunaan bahan api bio. Maka, penggunaan bahan api biodiesel (BDF) sebagai alternatif bagi diesel fosil (DSL) merupakan antara langkah efektif untuk menurunkan CO\textsubscript{2} kerana ia diklasifikasikan sebagai tenaga boleh baharu dan bersih. Namun, diketahui bahawa terdapat kekangan dalam penggunaan BDF seperti hilang kecekapan dan kesan jangka masa panjang terhadap enjin. Oleh itu, satu kajian yang fokus kepada mengkaji kesan-kesan campuran DSL dengan BDF yang dihasilkan daripada minyak mentah kelapa sawit (CPO), minyak pokok jarak (JCO) dan minyak masak terpakai (WCO) pada nisbah campuran yang berbeza terhadap prestasi enjin dan gas-gas ekzos yang terbebas telah dilaksanakan. Kajian ini telah disempurnakan menggunakan sebuah enjin diesel marin 4-lejang kecil yang beroperasi pada kelajuan 800, 1200, 1600 dan 2000 ppm di bawah beban dinamometer pada 0, 50 dan 90% serta telah dipasangkan sekali alat penguji gas ekzos pada paip ekzos. Hasil kajian mendapati bahawa terdapat peningkatan terhadap prestasi enjin dari segi daya kilas, kuasa brek, kecekapan terma brek (BTE) dan tekanan min efektif brek (BMEP) manakala berlaku penurunan penggunaan bahan api spesifik brek (BSFC) bagi bahan api CPO dan JCO berbanding DSL. Sementara itu, hasil yang berlawanan diperoleh bagi bahan api WCO. Sebagai kesinambungan, penggunaan CPO dan JCO membebaskan gas karbon monoksida (CO) yang lebih rendah tetapi pengoksidaan gas nitrogen (NOx), gas karbon dioksida (CO\textsubscript{2}) dan hidrokarbon (HC) yang lebih tinggi berbanding DSL. Selain itu, WCO membebaskan gas CO, CO\textsubscript{2} dan HC yang lebih rendah tetapi NOx lebih tinggi berbanding DSL. Dapat dirumuskan bahawa BDF boleh digunakan dalam enjin diesel tanpa sebarang modifikasi enjin. Hasil kajian ini sangat berguna sebagai panduan dan rujukan pihak berkuasa tempatan dalam menilai dan membuat pemilihan campuran BDF yang sesuai dan optima dalam pembangunan polisi, peraturan dan piawai.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of study 1
1.2 Problem statement 3
1.3 Objectives of study 4
1.4 Scopes of study 4
1.5 Significant of study 5
1.6 Project time scale 5

CHAPTER 2 LITERATURE REVIEW

2.1 Biodiesel fuels 6
2.1.1 Advantages of biodiesel as diesel fuel 8
2.1.2 Disadvantages of biodiesel as diesel fuel 8

2.2 International standard specification for biodiesel 10
2.2.1 Policy and standard adopted for biodiesel in Malaysia 15

2.3 Overview of feedstocks for biodiesel used in the study 18

2.3.1 Oil palm 20
2.3.1 Jatropha curcas 23
2.3.3 Waste cooking oil 24

2.4 Properties of biodiesel fuels 26

2.4.1 Reviews on properties of crude palm oil as compared to diesel fuel 27
2.4.1.1 Evaluation of 5 to 20% biodiesel blend on heavy-duty common-rail diesel engine 27
2.4.1.2 Performance, emissions and heat losses of palm and jatropha biodiesel blends in a diesel engine 28

2.4.2 Reviews on properties of jatropha curcas oil as compared to diesel fuel 30

2.4.2.1 Biodiesel production from jatropha curcas: A review 30
2.4.2.2 Particle number and size distribution from a diesel engine with jatropha biodiesel fuel 31

2.4.3 Reviews on properties of waste cooking oil as compared to diesel fuel 33

2.4.3.1 Fuel and injection characteristics for a biodiesel type fuel from waste cooking oil 33
2.4.3.2 Performance, emission and combustion characteristics of diesel engine fueled with biodiesel produced from waste cooking oil 34
2.5 Impact of biodiesel fuel on engine performance

2.5.1 Reviews on the effects of crude palm oil on engine performance

2.5.1.1 Performance and emissions characteristics of diesel engine fuelled by biodiesel derived from palm oil

2.5.1.2 Performance and emissions of a diesel engine fueled by biodiesel derived from different vegetable oils and the characteristics of combustion of single droplets

2.5.2 Reviews on the effects of jatropha curcas oil on engine performance

2.5.2.1 Influence of ethanol blend addition on compression ignition engine performance and emissions operated with diesel and jatropha methyl ester

2.5.2.2 Experimental investigations on a jatropha oil methanol dual fuel engine

2.5.3 Reviews on the effects of waste cooking oil on engine performance

2.5.3.1 Effects of biodiesel derived by waste cooking oil on fuel consumption and performance of diesel engine

2.5.3.2 Characteristics of output performance & emission of diesel engine employed common rail fueled with biodiesel blends from wasted cooking oil

2.6 Impact of biodiesel fuel properties on exhaust emissions

2.6.1 Reviews on the effects of crude palm oil on exhaust emissions

2.6.1.1 Experimental investigation of emissions characteristics of small diesel engine fuelled by blended crude palm oil
2.6.1.2 Comparative study of performance and emission characteristics of biodiesels from different vegetable oils with diesel

2.6.2 Reviews on the effects of jatropha curcas oil on exhaust emissions

2.6.2.1 Performance, emission and combustion characteristics of jatropha oil blends in a direct injection CI engine

2.6.2.2 Investigation of diesel engine using bio-diesel (methyl ester of jatropha oil) for various injection timing and injection pressure

2.6.3 Reviews on the effects of waste cooking oil on exhaust emissions

2.6.3.1 Emissions characteristics of small diesel engine fuelled by waste cooking oil

2.6.3.2 Comparison of particulate PAH emissions for diesel, biodiesel and cooking oil using a heavy duty DI diesel engine

2.7 Critical literature review

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research methodology flow chart

3.3 Biodiesel fuels preparation

3.3.1 Procedure and production process of biodiesel

3.3.2 Procedure and blending process of biodiesel with diesel fuel

3.3.3 Measuring procedure of biodiesel and biodiesel blended fuel properties

3.4 Experimental approach

3.4.1 Tested engine
3.4.2 Emission gas analyser

3.5 Experimental setup

CHAPTER 4 RESULT AND DISCUSSION

4.1 Introduction

4.2 Measured properties of tested biodiesel fuel

4.3 Analysis of engine performance, combustion characteristics and exhaust emission of diesel engine fuelled by crude palm biodiesel oil

4.3.1 Effects analysis of crude palm biodiesel oil on engine performance with respect to the increasing of engine speed at different load condition

4.3.2 Effects analysis of crude palm biodiesel oil on engine performance with respect to the increasing of blending ratio at different load condition

4.3.3 Combustion analysis of crude palm biodiesel oil at different engine speed and load condition

4.3.4 Effects analysis of crude palm oil on exhaust gas emissions with respect to the increasing of engine speed at different load condition

4.3.5 Effects analysis of crude palm oil on exhaust gas emissions with respect to the increasing of blending ratio at different load condition

4.4 Analysis of engine performance, combustion characteristics and exhaust emission of diesel engine fuelled by jatropha curcas biodiesel oil

4.4.1 Effects analysis of jatropha curcas biodiesel oil on engine performance with respect to the increasing of engine speed at different load condition

4.4.2 Effects analysis of jatropha curcas biodiesel oil on engine performance with respect to the increasing of blending ratio at different load condition
4.4.3 Combustion analysis of jatropha curcas biodiesel oil at different engine speed and load condition

4.4.4 Effects analysis of jatropha curcas oil on exhaust gas emissions with respect to the increasing of engine speed at different load condition

4.4.5 Effects analysis of jatropha curcas oil on exhaust gas emissions with respect to the increasing of blending ratio at different load condition

4.5 Analysis of engine performance, combustion characteristics and exhaust emission of diesel engine fuelled by waste cooking biodiesel oil

4.5.1 Effects analysis of waste cooking biodiesel oil on engine performance with respect to the increasing of engine speed at different load condition

4.5.2 Effects analysis of waste cooking biodiesel oil on engine performance with respect to the increasing of blending ratio at different load condition

4.5.3 Combustion analysis of waste cooking biodiesel oil at different load condition and engine speed

4.5.4 Effects analysis of waste cooking oil on exhaust gas emissions with respect to the increasing of engine speed at different load condition

4.5.5 Effects analysis of waste cooking oil on exhaust gas emissions with respect to the increasing of blending ratio at different load condition

4.6 Comprehensive analysis of engine performance and exhaust gas emission characteristic on diesel engine fuelled by all types of biodiesel blends

4.6.1 Comprehensive analysis of all biodiesel blends on engine performance and exhaust gas emissions during 800 rpm
4.6.2 Comprehensive analysis of all biodiesel blends on engine performance and exhaust gas emissions during 1200 rpm 140

4.6.3 Comprehensive analysis of all biodiesel blends on engine performance and exhaust gas emissions during 1600 rpm engine speed 143

4.6.4 Comprehensive analysis of all biodiesel blends on engine performance and exhaust gas emissions during 2000 rpm engine speed 146

4.6.5 Summary 149

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION 150

5.1 Conclusions 150

5.1.1 The effects of biodiesel blends fuel on fuel characteristics 150

5.1.2 The effects of crude palm biodiesel oil blends on engine performance and exhaust gas emissions 151

5.1.3 The effects of jatropha curcas biodiesel oil blends on engine performance and exhaust gas emissions 151

5.1.4 The effects of waste cooking biodiesel oil blends on engine performance and exhaust gas emissions 152

5.2 Recommendation 152

REFERENCES 153

APPENDICES 159
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Stoichiometric quantity of methyl alcohol (% vol.)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Potential feedstocks for biodiesel worldwide</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of biodiesel production technologies</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>ASTM D6751 biodiesel fuel standard</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>ASTM standards of biodiesel and petrodiesel</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>European standard, EN 14214 for biodiesel fuel</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>Status summary of biodiesel in Asian countries</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>National Biofuel Policy (NBP): Strategic objectives</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>General applicable requirements and test methods as in MS 2008:2008</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Physicochemical properties of palm oil methyl ester, PME fuels test in various ratio blends</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>Fuel properties of the tested palm biodiesel oil and diesel blends, (PB)</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>Fatty acid methyl ester (FAME) compositions of the tested biodiesels</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Fuel properties of Jatropha oil, Jatropha biodiesel and fossil diesel</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Fatty acid composition (FFA) (%) of the seed oil of Jatropha curcas</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>Basic physical and chemical properties of petroleum diesel, B10, B20 and biodiesel fuels</td>
<td>32</td>
</tr>
<tr>
<td>2.16</td>
<td>Physical characteristics of the fuels</td>
<td>33</td>
</tr>
<tr>
<td>2.17</td>
<td>Comparative results for B100</td>
<td>34</td>
</tr>
<tr>
<td>2.18</td>
<td>Fuel properties of biodiesel in comparison with conventional diesel and waste cooking oil</td>
<td>35</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.19</td>
<td>Literatures summary on the fuel properties, effects on performance and exhaust emissions of biodiesel</td>
<td>79</td>
</tr>
<tr>
<td>3.1</td>
<td>Test engine specification</td>
<td>94</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification of emission gas analyser model IMR 2800-A</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of fuels tested in the experiment</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>The comprehensive variant on performance and emissions of biodiesel in average relative to diesel fuel</td>
<td>149</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Production oil yield for various source of biodiesel feedstocks</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Oil palm tree and fruits</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Fresh oil palm fruit and its longitudinal section</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The example of palm kernel and PKO, and mesocarp and CPO</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Jatropha Curcas plant and seed</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Grease content in waste cooking oil (WCO)</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Transesterification reaction of triglycerides</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Biodiesel fuel properties and their associated impact</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Cumulative heat release at 100% engine load for a medium-duty direct injection (DI) transportation engine</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Effects of palm oil blending on engine performance analysis without load conditions</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Effects of palm oil blending and engine speed on engine performance and emissions under medium load (50% test load condition)</td>
<td>39</td>
</tr>
<tr>
<td>2.12</td>
<td>Engine performance and combustion characteristics with BDF derived from palm oil, rape oil and soy oil</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Heat release rates with gas oil and palm oil BDF</td>
<td>41</td>
</tr>
<tr>
<td>2.14</td>
<td>Variations in BSFC with blends of ethanol, diesel and JME</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>Variations in BTE with blends of ethanol, diesel and JME</td>
<td>43</td>
</tr>
<tr>
<td>2.16</td>
<td>Variation of cylinder pressure with crank angle for ethanol, diesel and JME</td>
<td>43</td>
</tr>
</tbody>
</table>
2.17 Variation of cumulative heat release with crank angle for ethanol, diesel and JME

2.18 Variation of rate of heat release with crank angle for diesel and JME

2.19 Variation of BTE with Methanol Energy Share

2.20 Variation of volumetric efficiency with methanol energy share

2.21 Variation of exhaust gas temperature with methanol energy share

2.22 Variation of ignition delay with methanol energy share

2.23 Variation of peak pressure with methanol energy share

2.24 Variation of MRPR with methanol energy share

2.25 Variation of combustion duration with methanol energy share

2.26 Variation of heat release rate at maximum efficiency

2.27 Effects of biodiesel blending ratio on engine performance (0% load condition)

2.28 Effects of biodiesel blending ratio on engine performance (100% load condition)

2.29 Effects of engine speed on engine performance (0% load condition)

2.30 Effects of engine speed on engine performance (50% load condition)

2.31 Output power of different WCO biodiesel blends at two speeds

2.32 BSFC of different WCO biodiesel blends at two speeds

2.33 Exhaust temperatures of different WCO biodiesel blends at two speeds

2.34 Direct impact and corresponding interactions of biodiesel fuel on emissions as compared to fossil diesel

2.35 Engine emission during 1500 rpm using OD and biodiesel blends (B5, B10 and B15)
2.36 Engine emission during 2000 rpm using OD and biodiesel blends (B5, B10 and B15) 60
2.37 Engine emission during 2500 rpm using OD and biodiesel blends (B5, B10 and B15) 61
2.38 Comparison of NOx emissions of biodiesels from various sources with diesel 62
2.39 Comparison of CO emissions of biodiesels from various sources with diesel 63
2.40 Comparison of HC emissions of biodiesels from various sources with diesel 63
2.41 Comparison of soot emissions of biodiesels from various sources with diesel 64
2.42 Comparison of CO₂ emissions of Jatropha oil blend fuelled engines 65
2.43 Comparison of CO emissions of Jatropha oil blend fuelled engines 66
2.44 Comparison of HC emissions of Jatropha oil blend fuelled engines 66
2.45 Comparison of oxygen content in exhaust gas of Jatropha oil blend fuelled engines 67
2.46 Comparison of NO emissions of Jatropha oil blend fuelled engines 67
2.47 Comparison of smoke opacity emissions of Jatropha oil blend fuelled engines 68
2.48 Variation in NOx emission of different MEOJ blends ratio and diesel at static injection timing in 23°bTDC 69
2.49 Variation in NOx emission of MEOJ blends (B20 and B80) at different injection timing 70
2.50 Variation in NOx emission of MEOJ blends (B20 and B40) at different injection pressure 70
2.51 Variation in smoke density of different MEOJ blends ratio and diesel at static injection timing in 23°bTDC 71
2.52 Variation in smoke emission of MEOJ blends (B20 and B80) at different injection timing 71
2.53 Variation in smoke emission of MEOJ blends (B20 and B40) at different injection pressure

2.54 Effects of WCO biodiesel blending ratio (vol %) on different engine speed (rpm)

2.55 Effects of biodiesel blending with different period of times (at 1500 rpm engine speed)

2.56 Effects of biodiesel blending with different period of times (at engine speed from 2000 to 2500 rpm)

2.57 Gaseous specific emissions at 23kW, upstream of the catalyst

Gaseous specific emissions at 23kW, downstream of the catalyst

2.58 Gaseous specific emissions at 47kW, US catalyst

2.59 Gaseous specific emissions at 47kW, DS catalyst

2.60 Gaseous Specific Emissions at 47kW, DS catalyst

3.1 Flow chart of overall research works

3.2 Biodiesel pilot plant in UTHM, Batu Pahat Johor

3.3 General flow-sheet for production of biodiesel

3.4 Block diagram of biodiesel production flow

3.5 Illustration of equipment apparatus setup for blending process

3.6 Block diagram of blending process

3.7 Schematic diagram of biodiesel blending process

3.8 Kinematic viscosity tester model Hydromation Viscolite 700

3.9 Instrument analysis of flash point, Pensky-Martens model PMA 4

3.10 Yanmar TF120-ML diesel engine

3.11 IMR 2800-A model gas analyser

3.12 Schematic of experimental setup

4.1 Effects of engine speed on engine performance by CPO without load condition
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Effects of engine speed on engine performance by CPO under 50% load condition</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of engine speed on engine performance by CPO under 90% load condition</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of CPO blending ratio on engine performance without load condition</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of CPO blending ratio on engine performance under 50% load condition</td>
<td>103</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of CPO blending ratio on engine performance under 90% load condition</td>
<td>103</td>
</tr>
<tr>
<td>4.7</td>
<td>Combustion characteristic of CPO during 800 rpm engine speed without load condition</td>
<td>105</td>
</tr>
<tr>
<td>4.8</td>
<td>Combustion characteristic of CPO during 1200 rpm engine speed without load condition</td>
<td>106</td>
</tr>
<tr>
<td>4.9</td>
<td>Combustion characteristic of CPO during 1200 rpm engine speed under 50% load condition</td>
<td>106</td>
</tr>
<tr>
<td>4.10</td>
<td>Combustion characteristic of CPO during 1600 rpm engine speed under 50% load condition</td>
<td>107</td>
</tr>
<tr>
<td>4.11</td>
<td>Combustion characteristic of CPO during 2000 rpm engine speed under 50% load condition</td>
<td>108</td>
</tr>
<tr>
<td>4.12</td>
<td>Combustion characteristic of CPO during 2000 rpm engine speed under 90% load condition</td>
<td>108</td>
</tr>
<tr>
<td>4.13</td>
<td>Effects of engine speed on exhaust gas emissions by CPO without load condition</td>
<td>110</td>
</tr>
<tr>
<td>4.14</td>
<td>Effects of engine speed on exhaust gas emissions by CPO under 50% load condition</td>
<td>110</td>
</tr>
<tr>
<td>4.15</td>
<td>Effects of engine speed on exhaust gas emissions by CPO under 90% load condition</td>
<td>110</td>
</tr>
<tr>
<td>4.16</td>
<td>Effects of CPO blending ratio on exhaust gas emissions without load condition</td>
<td>112</td>
</tr>
<tr>
<td>4.17</td>
<td>Effects of CPO blending ratio on exhaust gas emissions under 50% load condition</td>
<td>112</td>
</tr>
<tr>
<td>4.18</td>
<td>Effects of CPO blending ratio on exhaust gas emissions under 90% load condition</td>
<td>112</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Effects of engine speed on engine performance by JCO without load condition</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Effects of engine speed on engine performance by JCO under 50% load condition</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Effects of engine speed on engine performance by JCO under 90% load condition</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Effects of JCO blending ratio on engine performance without load condition</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Effects of JCO blending ratio on engine performance under 50% load condition</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>Effects of JCO blending ratio on engine performance under 90% load condition</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Combustion characteristic of JCO during 800 rpm engine speed without load condition</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Combustion characteristic of JCO during 1200 rpm engine speed without load condition</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Combustion characteristic of JCO during 1200 rpm engine speed under 50% load condition</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Combustion characteristic of JCO during 1600 rpm engine speed under 50% load condition</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Combustion characteristic of JCO during 1600 rpm engine speed under 90% load condition</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>Combustion characteristic of JCO during 2000 rpm engine speed under 90% load condition</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Effects of engine speed on exhaust gas emissions by JCO without load condition</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>Effects of engine speed on exhaust gas emissions by JCO under 50% load condition</td>
<td></td>
</tr>
<tr>
<td>4.33</td>
<td>Effects of engine speed on exhaust gas emissions by JCO under 90% load condition</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>Effects of JCO blending ratio on exhaust gas emissions without load condition</td>
<td></td>
</tr>
<tr>
<td>4.35</td>
<td>Effects of JCO blending ratio on exhaust gas emissions under 50% load condition</td>
<td></td>
</tr>
</tbody>
</table>
4.36 Effects of JCO blending ratio on exhaust gas emissions under 90% load condition 124
4.37 Effects of engine speed on engine performance by WCO without load condition 126
4.38 Effects of engine speed on engine performance by WCO under 50% load condition 126
4.39 Effects of engine speed on engine performance by WCO under 90% load condition 126
4.40 Effects of WCO blending ratio on engine performance without load condition 128
4.41 Effects of WCO blending ratio on engine performance under 50% load condition 128
4.42 Effects of WCO blending ratio on engine performance under 90% load condition 128
4.43 Combustion characteristic of WCO during 800 rpm engine speed without load condition 129
4.44 Combustion characteristic of WCO during 1200 rpm engine speed without load condition 130
4.45 Combustion characteristic of WCO during 1200 rpm engine speed under 50% load condition 130
4.46 Combustion characteristic of WCO during 1600 rpm engine speed under 50% load condition 131
4.47 Combustion characteristic of WCO during 1600 rpm engine speed under 90% load condition 132
4.48 Combustion characteristic of WCO during 2000 rpm engine speed under 90% load condition 132
4.49 Effects of engine speed on exhaust gas emissions by WCO without load condition 134
4.50 Effects of engine speed on exhaust gas emissions by WCO under 50% load condition 134
4.51 Effects of engine speed on exhaust gas emissions by WCO under 90% load condition 134
4.52 Effects of WCO blending ratio on exhaust gas emissions without load condition 136
4.53 Effects of WCO blending ratio on exhaust gas emissions under 50% load condition 136
4.54 Effects of WCO blending ratio on exhaust gas emissions under 90% load condition 136
4.55 Performance of diesel engine by all types of biodiesel blends during 800 rpm engine speed without load condition 138
4.56 Performance of diesel engine by all types of biodiesel blends during 800 rpm engine speed under 50% load condition 138
4.57 Performance of diesel engine by all types of biodiesel blends during 800 rpm engine speed under 90% load condition 138
4.58 Emissions characteristic by all types of biodiesel blends during 800 rpm engine speed without load condition 139
4.59 Emissions characteristic by all types of biodiesel blends during 800 rpm engine speed under 50% load condition 139
4.60 Emissions characteristic by all types of biodiesel blends during 800 rpm engine speed under 90% load condition 139
4.61 Performance of diesel engine by all types of biodiesel blends during 1200 rpm engine speed without load condition 141
4.62 Performance of diesel engine by all types of biodiesel blends during 1200 rpm engine speed under 50% load condition 141
4.63 Performance of diesel engine by all types of biodiesel blends during 1200 rpm engine speed under 90% load condition 141
4.64 Emissions characteristic by all types of biodiesel blends during 1200 rpm engine speed without load condition 142
4.65 Emissions characteristic by all types of biodiesel blends during 1200 rpm engine speed under 50% load condition 142
4.66 Emissions characteristic by all types of biodiesel blends during 1200 rpm engine speed under 90% load condition 142
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.67</td>
<td>Performance of diesel engine by all types of biodiesel blends during 1600 rpm engine speed without load condition</td>
</tr>
<tr>
<td>4.68</td>
<td>Performance of diesel engine by all types of biodiesel blends during 1600 rpm engine speed under 50% load condition</td>
</tr>
<tr>
<td>4.69</td>
<td>Performance of diesel engine by all types of biodiesel blends during 1600 rpm engine speed under 90% load condition</td>
</tr>
<tr>
<td>4.70</td>
<td>Emissions characteristic by all types of biodiesel blends during 1600 rpm engine speed without load condition</td>
</tr>
<tr>
<td>4.71</td>
<td>Emissions characteristic by all types of biodiesel blends during 1600 rpm engine speed under 50% load condition</td>
</tr>
<tr>
<td>4.72</td>
<td>Emissions characteristic by all types of biodiesel blends during 1600 rpm engine speed under 90% load condition</td>
</tr>
<tr>
<td>4.73</td>
<td>Performance of diesel engine by all types of biodiesel blends during 2000 rpm engine speed without load condition</td>
</tr>
<tr>
<td>4.74</td>
<td>Performance of diesel engine by all types of biodiesel blends during 2000 rpm engine speed under 50% load condition</td>
</tr>
<tr>
<td>4.75</td>
<td>Performance of diesel engine by all types of biodiesel blends during 2000 rpm engine speed under 90% load condition</td>
</tr>
<tr>
<td>4.76</td>
<td>Emissions characteristic by all types of biodiesel blends during 2000 rpm engine speed without load condition</td>
</tr>
<tr>
<td>4.77</td>
<td>Emissions characteristic by all types of biodiesel blends during 2000 rpm engine speed under 50% load condition</td>
</tr>
<tr>
<td>4.78</td>
<td>Emissions characteristic by all types of biodiesel blends during 2000 rpm engine speed under 90% load condition</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

- **%** - Percentage
- **°C** - Degree Celsius (temperature unit)
- **°CA** - Degree crank angle
- **AIST** - National Institute of Advanced Industrial Science and Technology, Japan
- **AMP** - Accumulation mode particles
- **ANP** - Agência Nacional de Petróleo, Brazil
- **ASTM** - American Society for Testing and Materials
- **ASTM D975** - American Standards for Testing Materials for diesel fuel
- **ASTM D6751** - American Standards for Testing Materials for B100 biodiesel
- **aTDC** - After top dead center
- **ATDC** - After top dead center
- **B0** - 100% diesel content
- **B5** - 5% biodiesel blend with 95% diesel content
- **B10** - 10% biodiesel blend with 90% diesel content
- **B15** - 15% biodiesel blend with 85% diesel content
- **B20** - 20% biodiesel blend with 80% diesel content
- **B30** - 30% biodiesel blend with 70% diesel content
- **B40** - 40% biodiesel blend with 60% diesel content
- **B50** - 50% biodiesel blend with 50% diesel content
- **B80** - 80% biodiesel blend with 20% diesel content
- **B100** - 100% biodiesel content
- **bar** - Pressure unit
- **BDF** - Biodiesel fuel
- **BHP** - Brake horse power
- **BIS** - Bureau of Indian Standards
- **BMEP** - Brake mean effective pressure
- **BO** - Bleach oil
REFERENCES

Cahill, B. (2007). EUROPEAN BIOFUEL STANDARDS AND REGULATIONS
BIOFUELS: A positive double impact, (February), 1–14.

MPOB, & APOC. (2010). Palm oil development and performance in Malaysia. *Presentation to USITC Washington DC, (February 3rd).*

