MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs pHEMTS AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

In the Faculty of Engineering and Physical Sciences

2015

WARSUZARINA MAT JUBADI

School of Electrical and Electronic Engineering
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENT</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF FIGURES AND ILLUSTRATIONS</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>17</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>19</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>20</td>
</tr>
<tr>
<td>COPYRIGHT STATEMENT</td>
<td>21</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>22</td>
</tr>
<tr>
<td>DEDICATIONS</td>
<td>23</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>24</td>
</tr>
<tr>
<td>1 CHAPTER 1 INTRODUCTION</td>
<td>25</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>25</td>
</tr>
<tr>
<td>1.2 Project Motivation and Objective</td>
<td>26</td>
</tr>
<tr>
<td>1.3 Scope of thesis</td>
<td>28</td>
</tr>
<tr>
<td>1.4 Thesis Outline</td>
<td>28</td>
</tr>
<tr>
<td>2 CHAPTER 2 THEORY AND BACKGROUND OF PSEUDOMORPHIC HIGH ELECTRON MOBILITY TRANSISTOR</td>
<td>31</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Hetero Junction Structure</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1 Lattice Matched and Pseudomorphic Material System</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Band Discontinuity</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3 Quantum Well and 2-DEG</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Metal Semiconductor Contacts</td>
<td>39</td>
</tr>
<tr>
<td>2.3.1 Ohmic Contact</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2 Schottky Contact</td>
<td>41</td>
</tr>
<tr>
<td>2.4 Introduction to High Electron Mobility Transistors (HEMTs)</td>
<td>45</td>
</tr>
</tbody>
</table>
2.4.1 HEMT Epitaxial Layer ... 45
2.5 Principles of Operation ... 50
2.6 Optimisation of pHEMT Designs .. 55
 2.6.1 Bandgap Engineering ... 56
 2.6.2 Changing the Channel ... 56
 2.6.3 Gate Geometry ... 57
2.7 Submicrometer pHEMT Design .. 58
 2.7.1 Short Channel Effect ... 60
 2.7.2 Submicron pHEMT T-gate Structure 61
2.8 The Milestone of pHEMT .. 63
2.9 Summary ... 64

3 CHAPTER 3 DEVICE MODELLING IN ATLAS SILVACO 65
 3.1 Introduction .. 65
 3.2 Basic Equations .. 66
 3.2.1 Maxwell's Equations .. 66
 3.2.2 Poisson's Equation ... 67
 3.2.3 Carrier Continuity Equations ... 68
 3.2.4 Carrier Transport Equations ... 68
 3.3 Introduction to ATLAS ... 70
 3.4 Structure Definition .. 72
 3.4.1 Epitaxial Layer Structure ... 73
 3.4.2 Electrodes and Contacts ... 74
 3.4.3 Doping Concentration .. 76
 3.4.4 Heterojunction Band Alignments ... 78
 3.5 Mobility Model for pHEMT ... 79
 3.5.1 Low Field Mobility Model .. 80
 3.5.2 High Field Mobility Model .. 81
3.6 Modelling the Physical Mechanisms ... 82
 3.6.1 Carrier Generation-Recombination Mechanisms 83
 3.6.2 Traps and Defects .. 87
3.7 Summary ... 90

4 CHAPTER 4 TWO DIMENSIONAL PHYSICAL MODELLING OF ADVANCED In\textsubscript{0.7}Ga\textsubscript{0.3}As/In\textsubscript{0.52}Al\textsubscript{0.48}As pHEMTs ... 92
 4.1 Introduction ... 92
 4.2 Epitaxial Layer Structure .. 93
 4.3 Mesh Definition for Device .. 97
 4.4 Two Dimensional Device Structure .. 98
 4.5 Band Diagram and 2DEG in Physical Modelling 100
 4.6 Modeling DC Characteristics ... 104
 4.6.1 Ideality factor and gate leakage current .. 108
 4.6.2 Current-Voltage Characteristics ... 111
 4.6.3 Threshold Voltage and Transconductance 115
 4.6.4 Modelling Impact Ionization in ATLAS ... 117
 4.6.5 Kink Effect in Physical Modelling .. 119
 4.7 RF Modelling for pHEMT device ... 123
 4.8 Summary ... 125

5 CHAPTER 5 EMPIRICAL MODELLING OF SUB-MICROMETER In\textsubscript{0.7}Ga\textsubscript{0.3}As/In\textsubscript{0.52}Al\textsubscript{0.48}As pHEMTs ... 126
 5.1 Introduction .. 126
 5.2 Empirical Device Modelling ... 126
 5.3 HEMT Small Signal Equivalent Circuit ... 127
 5.4 Small Signal Model Parameters .. 128
 5.4.1 Extrinsic Elements Extraction ... 130
 5.4.2 Intrinsic Elements Extraction ... 131
 5.5 Large Signal Model for HEMTs ... 136
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Steps in Device Modelling</td>
<td>137</td>
</tr>
<tr>
<td>5.7</td>
<td>pHEMT Device Structure</td>
<td>137</td>
</tr>
<tr>
<td>5.8</td>
<td>DC and RF Characteristics</td>
<td>140</td>
</tr>
<tr>
<td>5.9</td>
<td>Linear Model for device under test</td>
<td>150</td>
</tr>
<tr>
<td>5.10</td>
<td>Nonlinear Modelling</td>
<td>155</td>
</tr>
<tr>
<td>5.10.1</td>
<td>DC Characteristics</td>
<td>155</td>
</tr>
<tr>
<td>5.10.2</td>
<td>RF Performance</td>
<td>157</td>
</tr>
<tr>
<td>5.11</td>
<td>Noise Model</td>
<td>162</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary</td>
<td>164</td>
</tr>
</tbody>
</table>

6 CHAPTER 6 DESIGN OF MONOLITHIC MICROWAVE INTEGRATED CIRCUIT LOW NOISE AMPLIFIER USING $\text{In}_{0.7}\text{Ga}_{0.3}\text{As}/\text{In}_{0.52}\text{Al}_{0.48}\text{As}$ pHEMTs | 165 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>6.2</td>
<td>MMIC Technology</td>
<td>166</td>
</tr>
<tr>
<td>6.3</td>
<td>Passive Component Design</td>
<td>167</td>
</tr>
<tr>
<td>6.3.1</td>
<td>MMIC NiCr Resistor</td>
<td>168</td>
</tr>
<tr>
<td>6.3.2</td>
<td>MMIC Capacitance</td>
<td>170</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Spiral Inductor for MMIC Inductance</td>
<td>173</td>
</tr>
<tr>
<td>6.4</td>
<td>LNA Figure of Merits</td>
<td>177</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Power Gain</td>
<td>177</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Noise Figure</td>
<td>179</td>
</tr>
<tr>
<td>6.5</td>
<td>LNA Design Specifications</td>
<td>181</td>
</tr>
<tr>
<td>6.6</td>
<td>MMIC LNA Circuit Design</td>
<td>182</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Active Device</td>
<td>183</td>
</tr>
<tr>
<td>6.6.2</td>
<td>LNA Topology</td>
<td>183</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Biasing Network</td>
<td>185</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Matching Network</td>
<td>187</td>
</tr>
</tbody>
</table>
6.7 MMIC LNA Design for C-band Frequency (4-8 GHz) .. 188
6.8 MMIC LNA Design for 8-12 GHz (NF @ 8.4 GHz) .. 193
6.9 Summary .. 197

7 CHAPTER 7 MODELLING OF ADVANCED In0.7Ga0.3As/AlAs RESONANT TUNNELLING DIODE IN ATLAS SILVACO 198

7.1 Introduction ... 198
7.2 Principle of operations ... 199
7.3 Current-Voltage Characteristics .. 201
7.4 RTD Device Structures .. 203
 7.4.1 Structure with Various AlAs barrier Thickness ... 204
 7.4.2 RTD Structure with Various Spacer Thicknesses 206
7.5 Analytical Modelling for RTD ... 209
 7.5.1 Basic Tunnelling Current Equations ... 209
 7.5.2 Physic-based Analytical Modelling .. 209
7.6 Physical Modelling Approach for RTD .. 212
 7.6.1 Quantum Tunnelling Process Simulation.. 212
 7.6.2 Non Equilibrium Green Function (NEGF) .. 214
 7.6.3 Mass Approximation .. 215
7.7 Results and Discussion .. 215
 7.7.1 Modelling with Spacer Thickness (ts) variations 215
 7.7.2 Doping Concentration ... 216
 7.7.3 Modelling with Barrier Thickness (tb) Variations 218
 7.7.4 Quantum Well Thickness (tqw) effects in IV characteristics 220
7.8 Optimisation of RTD Devices .. 221
7.9 Summary .. 223
CHAPTER 8 CONCLUSION AND FUTURE WORK .. 224

8.1 Conclusions .. 224

8.2 Future Work ... 226

APPENDIX A: TWO PORT NETWORK AND S-PARAMETER 228

APPENDIX B: TRANSFORMATION OF Z→ Y PARAMETER 231

APPENDIX C: .. 232

EE_HEMT1_Model (EESof Scalable Nonlinear HEMT Model) 232

APPENDIX D: .. 235

Material Parameters Used in XMBE131 pHEMT Device Physical Modelling...... 235

APPENDIX E: .. 236

DECKBUILD File for XMBE308 RTD Device (QUANTUM MODELLING) 236

REFERENCES ... 238
LIST OF FIGURES AND ILLUSTRATIONS

Figure 2.1 The energy gap of III–V compounds and ternary derivatives 32
Figure 2.2 Conceptual formation of (a) lattice matched, (b) lattice mismatched with defects, and pseudormorphic layers (c) Compressive and (d) Tensile strain 36
Figure 2.3 Energy Band Diagrams for wide and narrow bandgap semiconductor ..37
Figure 2.4 An ideal undoped square shape quantum well (a) Structure, Energy band diagram, and (c) Conduction band diagram if AlGaAs is n-doped [35] 39
Figure 2.5 Band diagram of a metal-semiconductor interface: (a) before contact and (b) after contact [33] .. 40
Figure 2.6 Current conduction at Ohmic contact (a) via TFE in highly doped semiconductor and (b) via TE at low Schottky barrier interface [33] 41
Figure 2.7 Energy and diagram of Schottky contact: (a) isolated and (b) on contact [33] ... 42
Figure 2.8 Current transport by thermionic emission in: .. 43
Figure 2.9 Depletion type contacts to n-type substrates with increasing doping concentration N_D: (a) Low N_D, (b) Intermediate N_D and (c) High N_D [37] 44
Figure 2.10 Cross section of conventional HEMT with δ-doped layer 45
Figure 2.11 Conduction band of general depletion mode HEMT structure 47
Figure 2.12 Drain Current versus δ-doping concentration variation [41] 48
Figure 2.13 Electron velocity as a function of electric field for variety of Indium (In) concentrations of InGaAs [24]. ... 49
Figure 2.14 Ideal I-V characteristics of a MESFET [33] 52
Figure 2.15 Transconductance extracted at different V_{ds} [44] 53
Figure 2.16 Frequency responses of a D-mode pHEMT under a fixed V_{DS} and V_{GS} 53
Figure 2.17 Id-Vg Characteristics as a function of Indium content in HEMT device [44] .. 57
Figure 2.18 I_D-V_{GS} characteristics at drain bias of 0.8V as a function of device gate length (nm). The inset presents a $g_{m(max)}$ at V_{ds}=0.8V [55] 58
Figure 2.19 Current gain f_T vs L_g for reported state-of-the-art MHEMTs, InP, HEMTs and GaAs PHEMTs [29] .. 59
Figure 2.20 Submicron Epilayer Structure and Gate Design: (a) T-Shape/Mushroom gate [18], (b) T-gate lattice-matched HEMT [14], (c) InAs channel HEMT [60], and (d) InGaN/InN/InGaN-based double channel HEMT [34] ..62
Figure 3.1 ATLAS Input-Output Hierarchy [80] ..70
Figure 3.2 ATLAS Command Groups Statement [80] ..71
Figure 3.3 Epitaxial layer profile for Sample VMBE2100 used for device structure 73
Figure 3.4 Ohmic Contact and Schottky contact defined in VMBE2100 pHEMT model. The source and drain electrode are stretched until the end of the channel layer ...75
Figure 3.5 Band profile for a HEMT as a function of sheet concentration77
Figure 3.6 The electron concentration in δ-doped layer and carrier concentration in Channel layer for XMBE2100 structure ..78
Figure 3.7 Energy band diagram for the VMBE2100 pHEMT structure model in ATLAS ..79
Figure 3.8 Simulations of Electron Mobility in the Channel Layer (In$_{0.7}$Ga$_{0.3}$As material) ..81
Figure 3.9 Definition of the trap energy level for acceptor and donor traps in reference to the conduction and valence band edges [80] ..87
Figure 3.10 Carrier Capturing/Releasing Mechanism in Acceptor-Like Traps [80] 88
Figure 3.11 Modelled I-V characteristics for VMBE2100 with Trap (red line)88
Figure 3.12 Trap density, N$_T$ value effects on the current-voltage characteristics ...89
Figure 3.13 The Shift in Threshold Voltage, V$_T$ due to Trap Density, N$_T$90
Figure 4.1 Epitaxial layer structures for various in-house fabricated pHEMT samples ...94
Figure 4.2 Schematic view of 0.25μm InGaAs/InAlAs/InP pHEMT XMBE131 with Pd/Ti/Au gate scheme as compared to the Ti/Au gate metallisation (Adapted from [98]) ..95
Figure 4.3 Device Mesh Structure for pHEMT structure which defined with non-cylindrical mesh for (a) VMBE2100 and (b) XMBE131 ..98
Figure 4.4 Schematic device structure for VMBE2100 showing epitaxial layers (size not to scale) ..99
Figure 4.5 Schematic device structure for XMBE131 epitaxial layers (size not to scale) ...99
Figure 4.6 Energy band diagram (at thermal equilibrium) for VMBE2100 epitaxial layer simulated with ATLAS Silvaco ... 100

Figure 4.7 Energy band diagram for the XMBE131 structure (at thermal equilibrium) simulated with ATLAS Silvaco ... 101

Figure 4.8 Tonyplot visualization of Electron Concentration and Sheet Carrier Density for (a) Single- and (b) Double Delta doping layer.. 102

Figure 4.9 (a) Sheet concentration (2DEG) and (b) Band diagram simulated at different biasing voltage (for VMBe2100 structure).. 103

Figure 4.10 pHEMT sample VMBe2100 (1 μm gate length) characteristics (a) Normalized current-voltage characteristics, (b) Threshold Current, \(V_T \), (c) Normalized transconductance, \(g_m \) with \(g_m=940mS/mm \) at \(V_{DS}=2V \) and (d) on-state leakage current where \(V_{DS}=0 \) to 2V with 250mV steps .. 105

Figure 4.11 pHEMT sample XMBE131, 0.25μm gate length (Pd gate metallisation) (a) Normalized current-voltage characteristics with maximum drain current, (b) Threshold Current, \(V_T \), (c) Normalized transconductance, \(g_m \) with \(g_m=940mS/mm \) at \(V_{DS}=2V \), (d) on-state leakage current where \(V_{DS}=0 \) to 2V with 250mV steps and (e) Schottky Current .. 107

Figure 4.12 Typical Schottky diode forward current characteristic of InP pHEMT 108

Figure 4.13 Schottky diode forward current characteristic of XMBE131 pHEMT modelled with different work function value.. 110

Figure 4.14 Simulated I-V Curve (with and without) Mobility Model for VMBe2100 .. 112

Figure 4.15 Current-Voltage Characteristics for normalised 4x200μm VMBe2100 pHEMT when only trapping mechanism activated, \(N_T=2e17cm^3 \) (without impact ionisation) .. 113

Figure 4.16 Modelled vs Measured I-V Characteristic for VMBe2100 113

Figure 4.17 Modelled vs. Measured \(V_T \) at \(V_{DS}=1V \) for VMBe2100 pHEMT 114

Figure 4.18 Current-Voltage Characteristics for normalised 2x50μm XMBE131pHEMT (optimised with trap, impact model) ... 114

Figure 4.19 \(I_{DS}-V_{GS} \) at \(V_{DS}=1V \) for normalised 2x50μm XMBE131pHEMT (optimised modelled vs. measured) ... 116

Figure 4.20 Transconductance (meas. Vs modelled) for normalised 2x50μm XMBE131pHEMT at \(V_{DS}=1V \) .. 116
Figure 4.21 2D Contour of Impact Ionisation rate in VMBE2100 Device Model: 118
Figure 4.22 I-V Characteristic with Impact Ionization: 119
Figure 4.23 Kink mechanism as explained by Somerville [38] (a) Simplified device cross-section used for the model. (b) Energy bands within the extrinsic source adjacent to the gate as a function of time. (c) Drain current characteristics as a function of time. ... 120
Figure 4.24 Kink Effect Anomalies in I-V Characteristics as a Function of Trap Density: (a) ΔI_{kink} is higher for high N_T [111] for AlGaN/GaN HEMT and (b) Simulated I-V characteristics with $N_T=5\times10^{17}$ cm$^{-3}$.. 122
Figure 4.25 The ΔI_{kink} analysis in I-V Characteristics with different trap N_T value 122
Figure 4.26 Measured vs modelled cut-off frequency, f_T for XMBE131 pHEMT sample ... 123
Figure 4.27 Measured vs modelled maximum frequency, f_{max} for XMBE131 pHEMT sample ... 123
Figure 4.28 Measured vs modelled S-parameter (a) S21, S12 and (b) S11, S22 for XMBE131 pHEMT sample ... 124
Figure 5.1 Physical origin of the HEMT small signal equivalent circuit model [110] ... 127
Figure 5.2 Standard form of HEMT small signal equivalent circuit [18] 128
Figure 5.3 Equivalent Circuit Model for FET Cold Bias Condition [18] 130
Figure 5.4 Method for extracting the device intrinsic Y matrix [105] 134
Figure 5.5 An illustration of a submicron device with a T-gate structure. 140
Figure 5.6 pHEMT sample XMBE131 (Ti/Au gate metallisation) (a) Normalized I-V characteristics with maximum $I_{DS}=540$ mA/mm at $V_{ds}=1$ V, (b) Threshold Voltage, V_T, (c) Normalized transconductance, g_m with $g_m=940$ mS/mm at $V_{ds}=2$ V and (d) on-state leakage current where $V_{ds}=0$ to 2 V with 250 mV steps 142
Figure 5.7 Unity gain frequency, f_T and maximum frequency, f_{max} at $V_{ds}=1$ V, $I_{DS}=13.19$ mA for sample XMBE131 ... 143
Figure 5.8 pHEMT sample VMBE1998 (a) Normalized I-V characteristics with maximum $I_{DS}=321$ mA/mm2 (2x50μm) and $I_{DS}=309$ mA/mm2 (2x200μm) at $V_{ds}=1$ V, (b) Threshold Voltage, V_T at -0.89 V for both device size, (c) Normalized transconductance, g_m with $g_m=529$ mS/mm (2x50μm) and $g_m=500$ mS/mm
(2x200\,\mu m) \text{ at } V_{ds}=2V \text{ and } (d) \text{ Off-State Gate Current Leakage : Forward and Reversed}

Figure 5.9 RF characteristics for pHEMT sample VMBE1998, 2x50 \,\mu m and 2x200 \,\mu m (a) Cut-off frequency, \(f_T \) at \(V_{DS}=1V \), 80\% \(g_{m\max} \) and (b) Maximum frequency, \(f_{\max} \text{ extrapolated at } V_{DS}=1V, 80\% \(g_{m\max} \)

Figure 5.10 pHEMT sample XMBE56 (a) Normalized I-V characteristics with maximum \(I_{DS}=450 \,mA/mm^2 \) (2x50\,\mu m) and \(I_{DS}=385 \,mA/mm^2 \) (2x200\,\mu m) at \(V_{ds}=1V \), (b) Threshold Voltage, \(V_T \) at -0.98V (2x50\,\mu m) and \(V_T \) at -1.0V (2x200\,\mu m) , (c) Normalized transconductance, \(g_m \) with \(g_m=430 \,mS/mm \) (2x50\,\mu m) and \(g_m=380 \,mS/mm \) (2x200\,\mu m) at \(V_{ds}=1V \), (d) Off-State Gate Current Leakage: forward and reverse and (e) on-state leakage current for \(V_{ds}=0 \) to 2V

Figure 5.11 (a) Schematic and (b) Equivalent transistor linear model [122]

Figure 5.12 Circuit Setup for Extrinsic element extraction (pinched) in ADS for XMBE131

Figure 5.13 Parameter extraction setup for Hot measurement

Figure 5.14 EEHEM models for initial current-voltage parameter for DC models

Figure 5.15 Measured versus modelled XMBE131 pHEMT (a) I-V characteristics (for \(V_{GS}=0.1 \) V to -0.8V, -0.1V steps), (b) threshold voltage (for \(V_{DS}=1V \) to 2V, 0.25V steps)

Figure 5.16 Curve fitting for 2x50\,\mu m XMBE131 (a) Forward and Reverse Gain and (b) Input and output reflection coefficient over frequency 40 MHz to 20 GHz measured at 80\% of maximum \(g_m \)

Figure 5.17 A Complete transistor model for XMBE131 2 x 50 \,\mu m pHEMT

Figure 5.18 Summary of curve fitting for 2 x 200 \,\mu m on VMBE1998 (a) I-V curve (b) Transconductance (c) Forward and reverse gain and (b) Reflection coefficient against frequency

Figure 5.19 Summary of curve fitting for 2 x 200 \,\mu m on XMBE56 (a) I-V curve (b) Transconductance (c) Forward and reverse gain and (b) Reflection coefficient against frequency

Figure 6.1 Equivalent circuit model for NiCR resistor

Figure 6.2 NiCr resistors modelled in ADS
Figure 6.3 Layout design of MMIC NiCr resistor (7.5 kΩ) with total wire length, L=3100 µm and wire width, W=20 µm. ... 169
Figure 6.4 An example for coplanar interdigital capacitor for MMICs [139] 170
Figure 6.5 Equivalent circuit for MMIC Capacitance .. 171
Figure 6.6 Modelled circuit for MIM Capacitor setup in ADS 172
Figure 6.7 S-parameter results for an 8pF MIM capacitor over the frequency..... 173
Figure 6.8 Equivalent circuit for spiral inductor ... 174
Figure 6.9 Schematic of equivalent circuit for spiral Inductor modelled in ADS. 175
Figure 6.10 S-parameter for 14 nH Spiral inductor over wide range frequency..... 176
Figure 6.11 Layout design for 14 nH Spiral inductor 176
Figure 6.12 Power reflection coefficients for a 2-port microwave network [110] .. 177
Figure 6.13 Reflection coefficients for a general microwave 2-port network 180
Figure 6.14 Schematic diagrams of basic LNA topologies [43] 184
Figure 6.15 Inductive Peaking Schematic [142] ... 184
Figure 6.16 Graph of typical I-V characteristic and operating bias point for HEMT .. 185
Figure 6.17 Circuit diagram of pHEMT with biasing circuit with inductor 186
Figure 6.18 General Input and output circuit of 2-port network 187
Figure 6.19 Single Stage circuit for 4-8 GHz frequency range 189
Figure 6.20 Gain, Noise figure, Stability and Input and output reflection results ... 190
Figure 6.21 Double Stage LNA circuit for 4-8 GHz frequency range 191
Figure 6.22 The gain, input and output reflection results for C-band Double-stage LNA .. 192
Figure 6.23 Single Stage circuit for 8-12 GHz frequency range 194
Figure 6.24 Gain, Noise figure and Input/output reflection results for SSLNA at 8-12 GHz frequency range ... 194
Figure 6.25 Double Double Stage LNA (DSLNA) circuit for 8-12 GHz frequency range ... 195
Figure 6.26 Maximum Gain, Noise Figure, Stability factor, and input and output reflection results for DSLNA operating at 8-12 GHz 196
Figure 7.1 Schematic of RTD Structure [153] ... 199
Figure 7.2 Energy band diagrams of an RTD and the corresponding IV curve [154] .. 200
Figure 7.3 Generic I-V characteristic of an RTD, showing peak............................. 202
Figure 7.4 Generic epilayer structure of RTD using In$_{0.8}$Ga$_{0.2}$As/AlAs material system studied in this project .. 204
Figure 7.5 Band diagram and doping profile for XMBE277 RTD (size 3μm \times 3μm) ... 205
Figure 7.6 IV Characteristics for various samples RTD with different barrier thicknesses ... 206
Figure 7.7 IV Characteristics for various samples RTD with different spacer thicknesses ... 208
Figure 7.8 Modelled and measured current density for sample XMBE277 (a) on large area mesa (3μm$x3\mu$m) and (b) on sub-micrometer area mesa (2μm$x0.35\mu$m) ... 211
Figure 7.9 Electron particle-wave duality (quantum tunnelling)[143] 213
Figure 7.10 A Symmetrical double barrier regions in RTD 213
Figure 7.11 I-V Characteristics (XMBE277 RTD) with various spacer thicknesses ... 216
Figure 7.12 Modelled and measured IV for XMBE301 RTD with doping variations ... 217
Figure 7.13 Modelled and measured IV for XMBE301 RTD with doping variations ... 217
Figure 7.14 I-V Characteristics (XMBE302 RTD) with various barrier thicknesses ... 219
Figure 7.15 I-V Characteristics (XMBE308 RTD) with various barrier thicknesses ... 219
Figure 7.16 Optimised model for XMBE308 with barrier thickness modification 220
Figure 7.17 Modelled IV Characteristics for XMBE301 RTD with t_{QW} variations ... 221
Figure 7.18 Optimised IV characteristics for RTD device sample: 222
LIST OF TABLES

Table 2.1 Lattice constant and energy band gap of common III-V binary and ternary compound semiconductors at 300 K [26, 27]...33

Table 3.1 VMBE2100 Electrodes definition in ATLAS..74
Table 3.2 Parameters to specify a doping profile [80]..76
Table 3.3 Generation/Recombination Mechanism Models...83
Table 4.1 Hall measurement data at 300 K (room temperature) and 77 K for VMBE2100 and XMBE131 pHEMT device ..96
Table 4.2 Ideality factor (n) measurement data vs modelled with various metal work function ..110
Table 4.3 Impact Ionization Parameters Applied for the Modelling [45].......................117
Table 5.1 Epitaxial structure for various pHEMT samples fabricated at the University of Manchester ..138
Table 5.2 Hall measurement data at 300 K (room temperature) and 77 K for VMBE1998, XMBE56 and XMBE131 pHEMT device ..139
Table 5.3 Biasing for in-house fabricated pHEMT sample devices (a V_DS=1V)141
Table 5.4 Ideality factor and Barrier height for VMBE1998 pHEMT sample145
Table 5.5 Ideality factor and Barrier height for XMBE56 pHEMT sample149
Table 5.6 Transconductance and RF characteristics XMBE56 pHEMT sample.....149
Table 5.7 Table of Extrinsic values for various pHEMT sample devices (V_DS=1V, 80% gm_max or ~ 10% Idss) ...152
Table 5.8 Table of intrinsic parameters for all devices at V_DS=1V, 10% I_DSS154
Table 5.9 Noise performance for fabricated pHEMT devices at V_DS=1V, 10% I_DSS ...163
Table 6.1 Parameter value used for in-house fabricated spiral inductor 175
Table 6.2 Specification for SSLNA and DSLNA in C-band frequency 188
Table 6.3 Component values used in C-band DSLNA design............................. 191
Table 6.4 Target Specification for X-band LNA compared to related works 193
Table 7.1 RTD Epitaxial Structure (XMBE277, ts=13 Å, 1ML ~ 2.7 Å [143]) 205
Table 7.2 Peak current density and PVCR for various RTD sample [142] 206
Table 7.3 RTD Epitaxial Structure (XMBE308, ts=25Å, 1 ML ~2.9 Å [143]) 207
Table 7.4 Figure of merits for various RTD samples.. 208
Table 7.5 Fitting parameters for large area and submicron RTD on sample XMBE277 ... 212
Table 7.6 Optimised parameter value for various device structures..................... 221
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DEG</td>
<td>Two-Dimensional Electron Gas</td>
</tr>
<tr>
<td>ADS</td>
<td>Advanced Design System</td>
</tr>
<tr>
<td>ASKAP</td>
<td>Australian SKA Pathfinder</td>
</tr>
<tr>
<td>ATA</td>
<td>Allen Telescope Array</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>CPW</td>
<td>Coplanar Waveguide</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>HBT</td>
<td>Heterojunction Bipolar Transistor</td>
</tr>
<tr>
<td>HEMT</td>
<td>High Electron Mobility</td>
</tr>
<tr>
<td>ICCAP</td>
<td>Integrated Circuit Characterization and Analysis Program</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>MBE</td>
<td>Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>MESFET</td>
<td>Metal Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MMIC</td>
<td>Monolithic Microwave Integrated Circuit</td>
</tr>
<tr>
<td>MOCVD</td>
<td>Metal-oxide Chemical Vapour Deposition</td>
</tr>
<tr>
<td>MODFET</td>
<td>Modulation Doped FET</td>
</tr>
<tr>
<td>M&N</td>
<td>Microelectronic and Nanostuctures</td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
</tr>
<tr>
<td>NF_{min}</td>
<td>Minimum Noise Figure</td>
</tr>
<tr>
<td>pHEMT</td>
<td>Pseudomorphic High Electron Mobility Transistor</td>
</tr>
<tr>
<td>PNA</td>
<td>General-purpose Network Analyser</td>
</tr>
<tr>
<td>QW</td>
<td>Quantum Well</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RTD</td>
<td>Resonant Tunnelling Diode</td>
</tr>
</tbody>
</table>
SDHT Selectively Doped Heterostructure Transistors
SKA Square Kilometre Array
TEGFET Two Dimensional Electron Gas Field Effect Transistors

Notations
\(C_{ds, gs} \) Drain/gate to source capacitance
\(C_{gd} \) Drain to gate capacitance
\(C_{pg, pd, ps} \) Pad capacitances to electrodes
\(\Delta E_c \) Conduction band discontinuity
\(\Delta E_g \) Band gap difference of heterojunction materials
\(\Delta E_v \) Valence band discontinuity
\(E_g \) Band gap energy
\(E_{br} \) Breakdown voltage
\(E_{fn} \) Electron Quasi fermi level
\(E_F \) Fermi Level
\(L_{g,s,d} \) Gate/Source/Drain contact inductance
\(N_C \) Effective density of states
\(P \) Polarization
\(P_{sp} \) Spontaneous polarization
\(P_{pz} \) Piezo-electric polarization
\(q \) Electron charge
\(R_{g,s,d} \) Gate/Source/Drain contact resistance
\(R_{ds, gs} \) Drain/gate to source resistance
\(v_{sat} \) Saturation velocity
\(V_T \) Threshold voltage of HEMT
\(x_{AlGaN} \) Aluminium molefraction in GaN
\(\mu \) Carrier Mobility
ABSTRACT

The University of Manchester
Candidate: Warsuzarina binti Mat Jubadi
Degree: Doctor of Philosophy (PhD)
Thesis Title: Modelling of Advanced Submicron Gate InGaAs/InAlAs pHEMTs and RTD Devices for Very High Frequency Circuits
Date: May 2015

InP based InAlAs/InGaAs pseudomorphic High Electron Mobility Transistors (pHEMTs) have shown outstanding performances, which makes them prominent in high frequency mm-wave and submillimeter-wave applications. However, conventional InGaAs/InAlAs pHEMTs have major drawbacks, i.e., very low breakdown voltage and high gate leakage current. These disadvantages degrade device performance, especially in Monolithic Microwave Integrated Circuit (MMIC) low noise amplifiers (LNAs). The optimisation of InAlAs/InGaAs epitaxial structures through advanced bandgap engineering together with gate length reduction from 1 μm into deep sub-μm regime is the key solution to enabled high breakdown and ultra-high speed, low noise pHEMT devices to be fabricated. Concurrently, device modelling plays a vital role in the design and analysis of pHEMT device and circuit performance. Physical modeling becomes essential to fully characterise and understand the underlying physical phenomenon of the device, while empirical modelling is significant in circuit design and predicts device’s characteristic performance.

In this research, the main objectives to accurately model the DC and RF characteristics of the two-dimensional (2D) physical modelling for sub-μm gate length for strained channel InAlAs/InGaAs/InP pHEMT has been accomplished and developed in ATLAS Silvaco. All modelled devices were optimised and validated by experimental devices which were fabricated at the University of Manchester; the sub-micrometer devices were developed with T-gate using I-line optical lithography. The underlying device physics insight are gained, i.e., the effects of changes to the device’s physical structure, theoretical concepts and its general operation, hence a reliable pHEMT model is obtained. The kink anomalies in I-V characteristics was reproduced and the 2D simulation results demonstrate an outstanding agreement with measured DC and RF characteristics.

The aims to develop linear and nonlinear models for sub-μm transistors and their implementation in MMIC LNA design is achieved with the 0.25 μm In_{0.5}Ga_{0.5}As/In_{0.32}Al_{0.48}As/InP pHEMT. An accurate technique for the extraction of empirical models for the fabricated active devices has been developed and optimised using Advance Design System (ADS) software which demonstrate excellent agreement between experimental and modelled DC and RF data. A precise models for MMIC passive devices have also been obtained and incorporated in the proposed design for a single and double stage MMIC LNAs in C- and X-band frequency. The single stage LNA is designed to achieve maximum gain ranging from 9 to 13 dB over the band of operation while the gain is increased between 20 dB and 26 dB for the double stage LNA designs. A noise figure of less than 1.2 dB and 2 dB is expected respectively, for the C- and X-band LNA designed while retaining stability across the entire frequency bands.

Although the RF performance of pHEMT is being vigorously pushed towards terahertz region, novel devices such as Resonant Tunnelling Diode (RTD) are needed to support future ultra-high speed, high frequency applications especially when it comes to THz frequencies. Hence, the study of physical modelling is extended to quantum modelling of an advanced In_{0.3}Ga_{0.2}As/AlAs RTD device to effectively model both large size and submicron RTD using Silvaco’s ATLAS software to reproduce the peak current density, peak-to-valley-current ratio (PVCR), and negative differential resistance (NDR) voltage range. The simple one-dimensional physical modelling for the RTD devices is optimised to achieve an excellent match with the fabricated RTD devices with variations in the spacer thickness, barrier thickness, quantum well thickness and doping concentration.
1 CHAPTER 1

INTRODUCTION

1.1 Overview

The High Electron Mobility Transistor (HEMT) and Pseudomorphic High Electron Mobility Transistor (pHEMT) are Field Effect Transistors (FET). HEMTs operate in a similar manner to MESFET but extend the performance of FET by taking advantage of the large band discontinuities in the band structures of the constituent semiconductor materials. Basically, HEMTs structure consists of compositional compound materials that are lattice-matched to the substrate. However in the pHEMT structure, the channel material is so thin that the crystal lattice stretches “pseudomorphically” to occupy the spacing of the nearby material. Consequently, it allows better performance due to the larger bandgap difference compared to the lattice-matched structure. The formation of quantum well and the two dimensional electron Gas (2DEG) in the channel provides HEMT with a high electron mobility and high carrier density, leading to low noise figures and higher cut-off frequency [1].

Amongst all material systems in the III-V compound semiconductors, the InGaAs/InAlAs material system has the most desirable band structure and transport properties (carrier mobility, saturation velocity, etc). This material system offers pHEMT devices with high electron sheet charge density and excellent carrier confinement in the channel, resulting in superior electron transport translating into higher transconductance (g_m), current gain cutoff frequency (f_T) and lower noise figure (NF). Hence, the InGaAs/InAlAs has become an advanced material system for high-speed, high-frequency and even in the lower frequency range of 0.9 GHz and 1.9 GHz that are used for mobile communication [2]. Current development of InP based InAlAs/InGaAs HEMTs have demonstrated excellent high frequency and high-gain performance [3, 4], i.e. a cut-off frequency above 625 GHz [5], and they
dominate the microwave and millimetre wave applications and low noise amplifiers (LNAs) fields [6, 7, 8].

The superior performance of InP based InAlAs/InGaAs pHEMTs as compared to the GaAs-based HEMT [9] makes them the most preferred candidates for the active devices selection and also an important aspects in the fabrication of Monolithic Millimeter Wave Integrated Circuit (MMIC) LNAs. The design of MMIC LNAs itself has emerged from the design for very low frequency, low noise figure, very high power, etc. For over a decade, the advancement in millimeter wave semiconductor technologies has been strongly driven by military requests such as sensor/radar application [10]. There are also an increasing number of wireless civil applications, i.e telecommunication-, sensors- and navigation-systems that are ever demanding for more and more low-noise and power devices at high frequencies. Undoubtedly, these systems could be realised with the outstanding combination of high frequency operation and low noise performance of the InGaAs/InAlAs/InP pHEMT devices.

1.2 Project Motivation and Objective

Recent advances in Metal Organic Chemical Vapour Deposition (MOCVD) and Molecular Beam Epitaxy (MBE) epitaxial growth techniques for III-V compound semiconductor systems have made it possible to grow extremely high-quality III-V heterojunction structures. Current development of InAlAs/InGaAs HEMTs have demonstrated excellent high cutoff frequency of 625 GHz up to 1 THz and high-gain performance [3, 4] and dominate the millimeter wave applications, i.e., low cost LNA [3] and Ka-band MMIC LNAs [6]. The previous work conducted by the Manchester group on novel pHEMT devices [11,12] and hence the MMIC LNA development for the SKA was initiated at the SKA-low frequency (L-band) [13, 14] using a one micron gate length device.

With the device size scaled down to the nanometer regime and various epitaxial layer structures being designed and optimized, physical modeling becomes essential to fully characterize and identify the underlying physical phenomenon of these
devices. Semiconductor modelling based on physical models [15, 16] can prove to be very helpful in the development of such transistors. The empirical modelling [17,18] is also required to accurately model and estimate the performance analysis the linear and nonlinear behaviour of the designed circuits, i.e. LNA over a range of frequency and characterize the device technological process. The development and verification of device simulation tools have become desirable as to compare statistically analysed measured data. With the aid of modelling, the time and cost of device fabrication and characterization undoubtedly can be considerably reduced [19]. This research aims to employ the advances of modelling tools, SILVACO simulation package and Advanced Design System (ADS) to appreciate the underlying device physics of the device towards the device output characteristics, to reproduce both the DC and RF device characteristic, and investigate the correlation of the device physics to the output characteristics. The initial work of the device modelling of 1 µm gate device will be extended to the deep submicrometer gate regime and aim to develop models for new transistors and their implementation in the design and fabrication of advanced integrated circuits using the extensive facilities available at the University of Manchester.

Despite of the high cut-off frequency achievements reported for InP pHEMT in the terahertz region, i.e. [20] and [21], novel devices are needed which are able to support future ultra-high speed, high frequency applications; especially when it comes to sub-THz or THz frequencies (operating at room temperature). The Resonant Tunnelling Diode (RTD) might well be the solution to this problem with its ability to provide a very high fundamental frequency well into the THz region. Therefore, the study of physical modelling is extended to quantum modelling for an advanced InGaAs/AlAs RTD device. The purpose of this extended work is to effectively model the RTD using Silvaco’s ATLAS software; particularly with respect to the peak current density, peak-to-valley-current ratio (PVCR), and negative differential resistance (NDR) voltage range.
1.3 Scope of thesis

This thesis presents the physical and empirical modelling of advanced InGaAs/InAlAs pHEMT for the development of low noise amplifier (LNA) designs to fulfil the requirements of the (8.0 to 12 GHz) band of the Square Kilometre Array (SKA) [22]. During the preliminary work, the transistor used in this project employed a 1μm gate length with multiple sized gate widths. The modelling and circuit designs are then progressed with the submicrometer gate InGaAs/InAlAs pHEMT to facilitate higher frequency applications. The transistors were in-house fabricated at the University of Manchester and the measurement of the transistors is carried out at room temperature. The proposed design is a Monolithic Microwave Integrated Circuit (MMIC) that combine high performance with low cost and avoids expensive and labor intensive external components (especially discrete inductors used for the input of the LNA). In this work, the advances in the InGaAs/InAlAs material system is fully utilised in the submicron gate length pHEMT and the study is extended into a simpler one dimensional structure of a two terminal device, the InGaAs/AlAs resonant tunnelling diode (RTD).

1.4 Thesis Outline

The organization of the remainder of this thesis is as follows:

Chapter 2 provides insights into the fundamental theory of semiconductor device physics for heterojunctions and HEMTs structure background. This chapter deals with the literature review of the basic concepts of III-V compound semiconductors. The development of different III-V FET devices in relation to the advancement of material engineering and their contribution to RF applications are presented. A comparison between the different FET structures (MESFET, HEMT and pHEMT) and material systems (InGaAs-AlGaAs, InGaAs-InAlAs) and the advantage of InP-based pHEMT for low noise and high speed applications is outlined. The discussion continues with an extensive study of the physics and operation of the devices. At the end of the chapter, some important physical parameter extraction methods are highlighted, as these methods are used throughout this work.
Chapter 3 highlights the significance of device simulations, introduces the simulation tools used in the development of the physical modelling performed in this work. Detail procedures of the device modelling of pHEMTs structure are presented, i.e. meshing, structure and parameter definitions, and physical models, and numerical methods. A detail explanation of the concepts of device modelling and current-transport equations used in this project is presented.

Chapter 4 briefly explains the fundamental models that are used in the simulation work for the small signal model. In this chapter a physically based model for various samples of the in-house fabricated pHEMTs has been developed, providing an insight to the internal device behaviour. The DC and RF characteristics of the two dimensional physical device simulations are compared with the experimental results which were fitted and analysed. The modelled device simulation shows excellent agreement with the experimental results.

Chapter 5 explains the empirical model parameters and device modelling steps for the pHEMT device. The empirical models for three different epitaxial layers with various device sizes and gate length are presented. The agreements between the modelled and measured parameter are discussed and analysed. An optimized pHEMT model which is used in the LNA design and a brief study on the device’s noise characteristics are presented at the end of this chapter. The results from device empirical modelling provides a guide for active device selection for LNA circuit designs.

Chapter 6 begins with the background of Monolithic Microwave Integrated Circuit (MMIC) and its advantages in the integrated circuit roadmap. This is followed by an outline of the LNA theoretical concept which is used to examine the requirements of a complete system design. The target specifications of the MMIC LNA design are then addressed; the performance constraints and compromises that arise in the design of circuit topologies, biasing networks and matching configurations are also discussed. The design and analysis of the single input single-ended output, single and double stage LNAs are presented using all of the criteria discussed in Chapters 6. The LNAs are designed to match a 50 Ω input and output impedance. At the end
of this chapter, the target specifications attained from the simulation of the single- and double-stage MMIC LNA for C-band and X-band frequency range are presented and discussed. The layout designs of these LNA circuits are also developed and presented.

Chapter 7 demonstrates a one-dimensional physical modelling for various sample of large-siz and submicrometer In$_{0.8}$Ga$_{0.2}$As/GaAs Resonant Tunneling Diode (RTD) device. The concept, operation principle and the applications of RTD in Terahertz (THz) region are explained at the beginning of the chapter. The modelling of the two terminal RTD device focuses on the DC analysis, which is mainly to reproduce the I-V characteristics of experimental devices, namely the negative differential resistance (NDR), NDR peak voltage, V_P (voltage at peak current) and the peak current density(I_P). The model optimisation based of the device structure, i.e. spacer layer, barrier layer and quantum well layer thicknesses are also studied. The modelled device simulation for DC analysis shows excellent agreement with the experimental results.

Finally, **Chapter 8** summarises the work that has been discussed in the earlier chapters and suggests some potential future research to further extend the work described in this thesis.
THEORY AND BACKGROUND OF PSEUDOMORPHIC HIGH ELECTRON MOBILITY TRANSISTOR

2.1 Introduction

For the past decades, the power of electronics has been driven by an increase in the density of silicon complementary metal–oxide–semiconductor (CMOS) transistors and the progression to their logic performance. The semiconductor chips are becoming more powerful, smaller and more economical and energy efficient. However, as the scaling of silicon transistor is now reaching its limits, the III-V compound semiconductors are now becoming the key choice to continue the microelectronic revolution for high speed and high frequency devices. The outstanding electron transport properties and frequency response of these materials might be central to the development of nanometre-scale logic transistors [23]. For example, the electron mobility in InGaAs and InAs HEMT is more than 10 times higher than in silicon at a comparable sheet density. In the early development, HEMTs, also known as Modulation Doped Field Effect Transistors (MODFETs), Two-dimensional Electron Gas Field Effect Transistors (TEGFETs), Heterojunction Field Effect Transistors (HFETs) or Selectively Doped Heterostructure Transistors (SDHTs) was originally developed for high speed applications and these devices were discovered to exhibit a very low noise figure. This is related to the nature of the two-dimensional electron gas (2DEG) and the fact that there are less electron collisions in the channel [6].

The basic fundamental which govern the development of HEMTs are explained in this chapter. An introduction to heterojunction, their band structures, formation of quantum wells, carrier confinement and 2DEG will be discussed. The HEMT and pHEMT structures and their operational principles are summarized. Some of the applications of pHEMTs and works concentrating in the pHEMTs design in the literature are also highlighted in later sections.
2.2 Hetero Junction Structure

Generally, HEMT structures are based on epitaxially grown layers with different compositions and energy band gaps. When these different semiconductor layers are brought together, they form heterojunctions. The principle parameters for heterostructures are the difference of energy bandgaps (E_g) and the lattice constant (a) for the two semiconductor materials. Figure 2.1 illustrates the lattice constant and energy gap parameters for various III-V material system that are of interest to the work presented here. These parameters play a very important role in the advanced bandgap engineering to optimize device characteristics.

![Figure 2.1 The energy gap of III–V compounds and ternary derivatives as a function of lattice constant [24]](image)

The ternary compound semiconductor materials that are lattice matched to GaAs and InP substrates are shown. For example, the AlAs, Al$_x$Ga$_{1-x}$As, (for all values of x) and In$_{0.48}$Ga$_{0.52}$P is lattice match with GaAs. Consequently, the In$_x$Ga$_{1-x}$As and In$_x$Al$_{1-x}$As are lattice matched to InP only at a single fixed mole fraction ($x \sim 0.52$). Practically, the materials chosen must have a very close lattice constant to minimise the disturbance at the heterointerface. However, for various materials that have slightly different lattice constant, Vegard’s law is used to synthesize new
semiconductor materials to match the size of the crystal lattices. Therefore, the resulting lattice constant and the energy band gap can be approximated using Vegard’s law [21, 22] as in Equation 2.1, where x is the mole fraction and A_Z and B_Z are the binary compound lattice constant and band gap values,

$$a_{\text{alloy}} = xA_Z + (1 - x)B_Z$$
Equation 2.1

The lattice constant and band-gap energy for various GaAs and InP-based materials are given in Table 2.1 [26,27]. Enhancements in epitaxial growth techniques have enabled the possibility of growing lattice mismatched heterostructures [27]. In this situation, the lattice atoms change abruptly between the two semiconductor materials with dissimilar energy band gaps and lattice constants [24, 25]. This growth technique is known as pseudomorphism and will be discussed in the next section.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Lattice constant, a_0 (Å)</th>
<th>Band gap, E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>5.653</td>
<td>1.42</td>
</tr>
<tr>
<td>AlAs</td>
<td>5.660</td>
<td>2.16</td>
</tr>
<tr>
<td>InAs</td>
<td>6.058</td>
<td>0.37</td>
</tr>
<tr>
<td>InP</td>
<td>5.869</td>
<td>1.35</td>
</tr>
<tr>
<td>In${0.53}$Ga${0.47}$As</td>
<td>5.869</td>
<td>0.76</td>
</tr>
<tr>
<td>In${0.52}$Al${0.48}$As</td>
<td>5.869</td>
<td>1.48</td>
</tr>
</tbody>
</table>

For an InP substrate, the lattice matched In$_{0.52}$Al$_{0.48}$As is usually used as a buffer as it has a large band gap, resulting in improved insulation; and In$_{0.53}$Ga$_{0.47}$As as a channel (due to its high mobility) followed by In$_{0.52}$Al$_{0.48}$As as a barrier (large ΔE_c). Over the years, the state-of-art compound semiconductor technology has moved from GaAs channel (lattice constant =5.64Å) to In$_x$Ga$_{1-x}$As/InP channels (5.87Å) which motivated by the higher saturation velocity in these materials [20].
2.2.1 Lattice Matched and Pseudomorphic Material System

Ideally, heterostructures are formed by semiconductors with the same crystal structures and the same lattice constant. A HEMT structures grown with the same lattice constant are referred to as lattice matched HEMTs, i.e. \(\text{In}_{0.53}\text{Ga}_{0.47}\text{As} \) and \(\text{In}_{0.52}\text{Al}_{0.48}\text{As} \) (lattice matched to InP). Structures with slightly different lattice constant are known as Pseudomorphic HEMTs (pHEMTs). In modern epitaxial growth techniques, the thickness of lattice mismatched layers is kept within a certain critical thickness limit and the deposited layer must be very thin to avoid defect or dislocation formation [23, 29]. This new layer is called “pseudomorphic” as it alters its original crystal structure and physical properties, i.e., \(\text{InGaAs-InAlAs}, \text{AlGaAs/InGaAs} \). For lattice mismatched, the atoms at the hetero-interface have to slightly adjust their positions in order for them to conserve the geometry of the lattice. The adjustments of the atomic position will result in a small strain at the interface. The critical thickness of grown epilayer \((h_C) \) and the strain \((\varepsilon) \) is given by Equation 2.22 and Equation 2.3. Respectively, \(a_S \) and \(a_L \) denotes the lattice constant for substrate and grown epilayer.

\[
h_C = \frac{a_S}{2\varepsilon} \quad \text{Equation 2.2}
\]

\[
\varepsilon = \frac{a_L - a_S}{a_S} \quad \text{Equation 2.3}
\]

The Figure 2.2 illustrates the crystal formation of the binary and ternary compound semiconductor material. In Figure 2.2 (a), \(a_L \) is in lattice matched with \(a_S \), and hence the over-layer and base material atoms at the crystal interface are not required to adjust their positions relative to each other. However, lattice mismatched in the semiconductor may result in defects due to dislocations, as shown in Figure 2.2 (b). Above the critical thickness, the excessive strain energy is released by the formation of dislocations where some of the bonds are missing or extra bonds appear. These dislocations adversely affect the electrical characteristics of a device by creating localized states which act as traps for the charge carriers [29]. Materials that are not in lattice matched or have different inter-atomic lattice spacing are known as pseudomorphic i.e., \(\text{AlGaAs} \) and \(\text{InGaAs} \). The formation of pseudomorphic crystal
structure under compressive and tensile strains are shown in Figure 2.2 (c) and Figure 2.2 (d) respectively. When a_L is larger than a_S, the resultant relaxed material is under compressive strain whereas the atoms are under tensile strain when a_L is smaller than a_S.
Figure 2.2 Conceptual formation of (a) lattice matched, (b) lattice mismatched with defects, and pseudomorphic layers (c) Compressive and (d) Tensile strain.
2.2.2 Band Discontinuity

Energy band discontinuity is the most important aspect of heterojunctions. It is an interesting feature i.e., in HEMTs which can be used to modify the transport of charge carriers. The junction of two semiconductors with a difference in energy bandgaps results in an abrupt change in the energy band diagram of the heterostructure. Figure 2.3 shows the energy band diagram of two isolated semiconductors with the notation given by: E_C and E_V indicating conduction and valence bands, E_{g1} and E_{g2} the energy band gap for material A and material B, χ is the electron affinities, E_F is the Fermi level, ΔE_c the electron affinity, and ΔE_c and ΔE_v representing the conduction and valence band discontinuities between the two materials [33].

![Figure 2.3 Energy Band Diagrams for wide and narrow bandgap semiconductor](image)

(a) before and (b) after contact

The energy-band model of an ideal, abrupt heterojunction, was first established by Anderson [34]. The model assumes that ΔE_c was equal to the difference in electron affinities, χ as shown in Equation 2.4 and Equation 2.5.

$$\Delta E_c = \chi_1 - \chi_2 \quad \text{Equation 2.4}$$

$$\Delta E_v = (E_{g2} - E_{g1}) - (\chi_1 - \chi_2) \quad \text{Equation 2.5}$$
Similarly, this could be written using Equation 2.6 and Equation 2.7,

\[\Delta E_g = E_{g1} - E_{g2} \quad \text{Equation 2.6} \]

\[\Delta E_g = \Delta E_c + \Delta E_v \quad \text{Equation 2.7} \]

In most semiconductors, the band gap engineering is very effective to attain numerous amounts of junction discontinuities. A larger band discontinuity, \(\Delta E_C \) will lead to better carrier confinement and therefore a higher carrier concentration at the 2-DEG interface. The InAlAs/InGaAs/InP material system has many significant advantages over the AlGaAs/GaAs [24] or AlGaAs/InGaAs/GaAs material systems. The \(\Delta E_C \) between \(\text{In}_{0.52}\text{Al}_{0.48}\text{As/In}_{0.53}\text{Ga}_{0.47}\text{As} \) layer in InAlAs/InGaAs/InP material system (> 0.5eV) is higher than the \(\Delta E_C \) between \(\text{Al}_{0.2}\text{Ga}_{0.8}\text{As/In}_{0.15}\text{Ga}_{0.85}\text{As} \) layer (~ 0.3 eV) in the pseudomorphic AlGaAs/InGaAs/GaAs material system. The band discontinuity is even lower for \(\text{Al}_{0.30}\text{Ga}_{0.70}\text{As/GaAs} \) heterojunction where the \(\Delta E_C \) is only 0.24 eV [16]. This property, therefore makes \(\text{In}_{0.52}\text{Al}_{0.48}\text{As/In}_{0.53}\text{Ga}_{0.47}\text{As/InP} \) a prominent and suitable candidate for high-speed devices application with greater flexibility over carrier control at the junction.

2.2.3 Quantum Well and 2-DEG

When a thin layer of (~ 100 Å) of low band gap semiconductor material (e.g. GaAs) is sandwiched between two similar high band gap semiconductors (e.g. AlGaAs), a Quantum Well (QW) can be formed in the heterostructure. Such a heterojunction boundary will experience discontinuities at the edges of the conduction band and valence band with a QW generated for the carriers (electrons and holes) as illustrated in Figure 2.4. The dopants in the high band gap layers can supply the carriers to the quantum well. When the bottom of the quantum well is below the Fermi level, the high energy donors will go down to the well, hence creating a Two Dimensional Electron Gas (2DEG). This is shown in Figure 2.4 (c). The electron is free to move parallel to the interface, and so is quasi two-dimensional. However, the electrons in the quantum well is unable to move in the direction perpendicular to the interface,
i.e. the crystal growth direction [35]. Careful choice of the materials and alloy compositions allow control of the carrier densities within the 2DEG.

![Diagram of AlGaAs/GaAs/AlGaAs quantum well](image)

Figure 2.4 An ideal undoped square shape quantum well (a) Structure, Energy band diagram, and (c) Conduction band diagram if AlGaAs is n-doped [35]

2.3 Metal Semiconductor Contacts

Metal-semiconductor contacts are present in every semiconductor device. There are two types of contact for a metal-semiconductor junction: Schottky contact or ohmic contact depending on the nature of the interface. The details of these contacts are discussed in section 2.3.1 and section 2.3.2.
2.3.1 Ohmic Contact

An ohmic contact is formed if no potential barrier exists between the metal and semiconductor. It is a non-rectifying contact and does not control the flow of current, thus the current flows equally in both directions (reverse and forward) with linear I-V characteristic. On top of that, an ohmic contact should have an insignificant contact resistance, R_C relative to the series resistance, r_s of the semiconductor so that zero or very small current loss occurs across the device. There are 2 types of ohmic contact: (1) for n-type semiconductor; the metal workfunction, Φ_m must be closer to or smaller than the semiconductor electron affinity χ. Therefore, Φ_m must be smaller than the work-function of semiconductor Φ_s, i.e. $\Phi_s > \Phi_m$, as shown in Figure 2.5 (2) for a p-type semiconductor, Φ_m must be close to or larger than the sum of electron affinity and energy bandgap of the semiconductor, which is usually impractical. Hence p-type ohmic contacts are a lot more difficult to fabricate than n-type ones.

![Band diagram of a metal-semiconductor interface](figure)

Practically, there are two ways in achieving a good ohmic contact in semiconductor processing: either by high semiconductor doping layer or through a low Schottky barrier height at metal-semiconductor junction. At any metal-semiconductor contact, there always exists a Schottky barrier [33]. The carriers must overcome this barrier...
in order to travel between the metal and semiconductor sides. When the semiconductor is heavily doped, i.e. $N_D \geq 10^{19} \text{ cm}^{-3}$, the depletion width and consequently the barrier width near the metal-semiconductor contact will be reduced. Electrons now can overcome this barrier and tunnel through it as the depletion width becomes sufficiently narrow. This mechanism is known as Thermionic Field Emission (TFE) [36]. Alternatively, the barrier height is reduced by means of a low energy gap material at the semiconductor side. Here, the electrons have energies larger than the potential barrier and Thermionic Emission (TE) takes place by electrons moving over the barrier [33]. Figure 2.6 illustrates the TFE and TE mechanism at the Schottky barrier interface.

![Figure 2.6](image1.png)

Figure 2.6 Current conduction at Ohmic contact (a) via TFE in highly doped semiconductor and (b) via TE at low Schottky barrier interface [33]

2.3.2 Schottky Contact

A Schottky contact (also known as rectifying contact), permits the flow of current in one direction and provides a barrier to the flow of current in the opposite direction. In Schottky contact, the semiconductor work-function, Φ_m is smaller than the work-function of the metal, Φ_m ($\Phi_s < \Phi_m$). Figure 2.7 (a) illustrates a metal to semiconductor interface before and after forming the Schottky contact for n-type semiconductor and metal contact. On contact, electrons from the semiconductor conduction band flow into lower energy states of metal, till a constant Fermi level is achieved at equilibrium condition. The flow of electrons will then leave a positive charge of ionised donor in the semiconductor which creates the depletion region of thickness, X_{dep} as illustrated in Figure 2.7 (b). The band bending at equilibrium,
results in a potential barrier, Φ_b, at the interface and a built-in potential, V_{bi} that restricts further diffusion of electrons from semiconductor to metal. The exact shape of the conduction and valence bands is determined by solving the Schrödinger and Poisson equations self-consistently.

Figure 2.7 Energy and diagram of Schottky contact: (a) isolated and (b) on contact [33]

The built-in potential is given by Equation 2.8:

$$V_{bi} = \Phi_b - \Phi_n$$ \hspace{1cm} \text{Equation 2.8}

where Φ_n is the potential difference between the minimum of conduction band (E_C) and Fermi level E_F, i.e.

$$\Phi_n = \frac{E_C - E_F}{q}$$ \hspace{1cm} \text{Equation 2.9}

The potential barrier, Φ_b, formed at the interface is related to the metal work-function, Φ_m and semiconductor electron affinity, χ_s as in Equation 2.10 and Equation 2.11:

$$\Phi_B = \Phi_m - \chi_s$$ \hspace{1cm} \text{Equation 2.10}

$$\chi_s = \phi_S - \phi_n$$ \hspace{1cm} \text{Equation 2.11}
Under zero bias condition, the net current flow between semiconductor to metal is zero because the same amount of current flows from semiconductor to metal and vice versa. However, under forward and reverse bias conditions, the flow of current transport changes due to the changes in the V_{bi}. These conditions are illustrated in Figure 2.8 in which ϕ_B remains constant [12] in both figures.

When a positive bias, e.g., V_F is applied to a metal, it will experience forward bias condition. Under this condition, the Fermi level, E_F will be shifted up and the built-in voltage, V_{bi} will be reduced by a voltage V_F as illustrated in Figure 2.8 (a). The Figure 2.8 (b) shows that if a negative bias, i.e., -V_R is applied to the metal, a reverse bias condition is achieved. In reversed bias condition, the Fermi level will be shifted down and the built-in-potential will increase by a voltage V_R. In a pHEMT, the quantity of electrons flow from metal to semiconductor under reverse bias condition is also known as leakage current [31]. The leakage current is one of the unwanted drawback for a pHEMT device which degrades its performance, particularly at high frequency applications.
Figure 2.9 Depletion type contacts to n-type substrates with increasing doping concentration N_D: (a) Low N_D, (b) Intermediate N_D and (c) High N_D [37].

The mechanism of TE, TFE and FE at the barrier is shown in Figure 2.9. Theoretically, a metal with a higher Φ_m will yield a larger Schottky barrier on the same semiconductor. But this is not quite valid in practice. There is always an intermediate layer, contributing to the surface contamination of the metal or the surface states of the semiconductors such as native oxides or dangling bonds after etching, formed in between the metal and semiconductor. As a result, the Fermi level of a semiconductor will pin at the surface [38] of the intermediate layer before equilibrium is achieved. The resulting barrier height is not sensitive to the change of metal work function and such phenomenon is called Fermi-level pinning [33].
2.4 Introduction to High Electron Mobility Transistors (HEMTs)

HEMTs are very similar to Metal Semiconductor Field Effect Transistors (MESFET) in terms of structure and operations, but the key difference is the heterojunction structures. By bringing two dissimilar semiconductors to the junction, a potential well is formed in the channel due to the bending of energy level. This results in high density of carrier confinement in the well (channel), which only allows electron to move in a two-dimensional plane which creates the 2DEG layer. It is the high two-dimensional electron gas density with a high mobility and low scattering mechanism which contributes to naming the device the High Electron Mobility Transistor. This ultimately results in improved gain, noise and power performance of the device.

2.4.1 HEMT Epitaxial Layer

HEMT is a field effect transistor (FET) and utilises a vertical structure. A typical HEMT structure consists of epitaxial layers, namely cap layer, barrier layer, channel layer, and buffer layer which are grown on semi insulating substrates. These epilayer have different material parameters such as energy band gaps, doping concentration, layer thickness, etc. Figure 2.10 illustrates a conventional HEMT structure with a single delta doping layer.

Figure 2.10 Cross section of conventional HEMT with δ-doped layer
2.4.1.1 Cap layer

The source and drain contacts are formed through the Cap layer. The Cap layer is heavily doped (usually $>10^{18}$ cm$^{-3}$) to facilitate the formation of a low resistance for the source and drain metal contacts. The thickness of the cap layer is about 50Å to 100 Å [24]. Higher doping levels and a thicker capping layer would simultaneously reduce the device contact resistance [39] and effectively shorten the source-to-drain spacing; resulting in very high electron velocity, g_m, and f_T in the device. However, this also significantly reduces the device breakdown voltage, V_{BR}, and also increases the device output conductance, g_{ds}, and drain-to-gate feedback capacitance, C_{dg}. Another technique followed is the alloying and annealing technique in which electrons heavily diffuse down to the 2DEG thus reducing the potential barrier caused due to difference in electron concentration on both sides of the junction [35].

2.4.1.2 Supply Layer

The supply layer is formed beneath the cap Layer using a wide band gap material. Typically, the supply layer is uniformly doped with Si to supply carriers that diffuse into the channel and become available for conduction. The distance between gate and channel is very critical and is largely determined by the thickness of the supply layer [35]. A thinner supply layer allows for a small distance between the gate metal and the carrier channel that results in higher charge density in the channel, cutoff frequency, f_T and transconductance, g_m but reduces breakdown voltage. The thickness of supply layer and increasing doping concentration of the supply layer reduces the depletion width. If the depletion region is not fully formed, i.e. the supply layer is not fully depleted, poor field effect actions are expected to arise in this regime [40]. In order to eliminate parallel conduction in the supply layer, this layer must be completely depleted by both heterojunction and the Schottky gate.
2.4.1.3 Delta (δ) Doping Layer

A uniformly doped supply layer can be replaced by an undoped supply layer, followed by a very thin but extensively doped layer called a δ-doped layer (or pulse-doped). Hence, when the parallel conduction problem in the barrier layer is reduced, high sheet charge density and breakdown voltage can be achieved.

Figure 2.11 Conduction band of general depletion mode HEMT structure with δ-doping and bulk-doping [33]

As a result, the channel concentration increases. The difference of these doping to the structure is illustrated in Figure 2.11. The energy quantization occurs at the discontinuity formed between the high and low band gap materials. Electrons in the supply layer (bulk doping case) or δ-doping can then tunnel through the thin potential barrier and be trapped into the triangular QW. The electrons in the QW forms a high electron mobility plane called a 2DEG. The Coulomb scattering between electrons and the fixed ionized atoms separated by the spacer layer leads to high mobility. Figure 2.12 shows the relation of δ-doping concentration and the drain current as described in [41]. A degradation of the drain current is observed with reducing the δ-doping concentration.
2.4.1.4 Spacer Layer

A spacer layer of undoped materials i.e., AlGaAs or InAlAs is placed between the InAlAs donor and the InGaAs channel layer to separate the negatively charged 2DEG from the ionized dopant atoms. A thin spacer layer is preferred for low-noise and power devices due to the reduced parasitic source resistance and the increase in transconductance, g_m and current density. However, a thicker spacer layer might be applied to provide higher electron mobility with a smaller charge density in the channel. At cryogenic temperatures the noise performance of a HEMT is strongly dependent on the spacer thickness due to the large increase in electron mobility and velocity [6].

2.4.1.5 Channel Layer

The channel layer is a narrow bandgap undoped material, i.e. GaAs or InGaAs. These material systems improve transport properties due to the higher mobility of InGaAs and stronger electron confinement associated with the quantum well at the heterojunction. The barrier on both sides of the channel form heterojunctions on either edge of the channel layer thus building QW which confines high carrier concentration. These electrons have superior mobility characteristic because of high mobility and undoped nature of the channel material. Increasing the Indium concentration in the carrier channel of the pHEMT will result in further improvements in electron carrier confinement and transport properties [24].
For example, the performance of InP based pHEMT is directly related to the intrinsic properties of the InGaAs/InAlAs material system. The high indium content (typically 53 – 80%) InGaAs channel contributes to the high electron mobility and velocity [42]. Moreover, the large band discontinuities at the InGaAs/InAlAs heterojunctions will permit high two-dimensional electron gas (2DEG) densities. Figure 2.13 shows the electron velocity as a function of electric field for various In concentrations of InGaAs. Unfortunately, increasing the Indium concentration in \(\text{In}_x\text{Ga}_{1-x}\text{As} \) also increases the lattice constant [24].

2.4.1.6 Buffer Layer

Basically, the buffer layer is developed to confine the carriers to the device channel. It is also significant to isolate any unwanted defects on the substrate surface and also to de-couple it from the 2DEG [43]. The buffer layer is grown using undoped wide bandgap material that creates an energy barrier in the conduction band, thus reducing electron injection into the buffer or substrate. The electrons being injected into the substrate layer because of the application of Drain-to-Source electric field, contribute to the drain current, thus increasing the output conductance of the device and degrading the device pinch-off characteristic. The thick buffer layer is used to reduce any growth defects, and to accumulate any impurities from the substrate interface that may degrade the performance of the 2DEG channel [35].
REFERENCES

238

Y.-W. Chen, W.-C. Hsu, R.-T. Hsu, Y.-H. Wu, and Y.-J. Chen, “Characteristics of In0.52Al0.48As/InxGa1−xAs HEMT’s with various InxGa1−xAs channels,” Solid-State Electronics, vol. 48, no. 1, pp. 119–124, Jan. 2004.

[64] U. K. Mishra, A. S. Brown, and S. E. Rosenbaum, “DC and RF performance of 0.1 μm gate length Al/sub 0.48/In/sub 0.52/Al/sub 0.38/In/sub 0.62/As...

[87] S. Rathi, J. Jogi, M. Gupta, and R. S. Gupta, “An analytical charge-based drain current model for nano-scale In 0.52 Al 0.48 As–In 0.53 Ga 0.47 as a separated double-gate HEMT,” *Semiconductor Science and Technology*, vol. 25, no. 11, p. 115003, Nov. 2010.

Muammar Mohamad Isa, “Low Noise Amplifiers Using Highly Strained InGaAs/InAlAs/InP pHEMT For Implementation In The Square Kilometre Array (SKA),” The University of Manchester, 2012.

140] K. W. Ian and M. Missous, “Thermally stable In 0.7 Ga 0.3 As/In 0.52 Al 0.48 As pHEMTs using thermally evaporated palladium gate metallization,” *Semiconductor Science and Technology*, vol. 29, no. 3, p. 035009, Mar. 2014.

141] F. Packeer, M. Mohamad Isa, W. Mat Jubadi, K. W. Ian, and M. Missous, “Fabrication and characterization of tensile In 0.3 Al 0.7 As barrier and compressive In 0.7 Ga 0.3 As channel pHEMTs having extremely low gate leakage for low-noise applications,” *Journal of Physics D: Applied Physics*, vol. 46, no. 26, p. 264002, Jul. 2013.

