ARCHIMEDEAN SPIRAL ANTENNA EMBEDDED WITH FREQUENCY SELECTIVE SURFACE FOR WIDEBAND APPLICATIONS

ABDIRAHMAN MOHAMUD SHIRE

This thesis is submitted in fulfillment of the requirements for the award of Master Degree of Electrical Engineering

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING, UNIVERSITI TUN HUSSEIN ONN MALAYSIA

December 2014
“Special to my dear parents; Hawa Jama Ali and Allahyarhamu Mohamud Shire Mohamed for their prayers and support for me. Not to forget for my lovely wife, Sa’diya Ahmed Mohamed, your support keeps me up alive and my lovely kids, Mohamud and Munir.”
ACKNOWLEDGEMENTS

All praise to be Allah, Lord of the universe, the Merciful and Gracious. Prayer for peace and prosperity to prophet, Muhammad S.A.W.

I would like to express my sincere acknowledgements to Dr. Fauziahanim binti Che Seman for her careful guidance, patience and advice which helped me a lot during my research. Her encouragement, understanding, patience and friendship throughout the project and my preparation of this dissertation are forever appreciated.

I would like to express my sincere gratitude to all my friends and family, especially to my wife Sa’diya for all the support during my entire thesis.
ABSTRACT

The potential applications such as satellite communication systems, critical military communications, radar warning systems and direction finding systems demand for high gain, uniform unidirectional radiation pattern and wideband antenna ranging from 3.1 GHz to 10.6 GHz. An Archimedean spiral antenna is the most potential candidate in the above mentioned applications as the antenna meets most of the above requirements. However, the practical implementation of spiral antenna is challenged by its bidirectional patterns, relatively low gain and the need for balanced feeding structures. A moveable ground plane is proposed as the backing technique of the spiral antenna by placing it at quarter wavelength behind spiral arms. Despite, the effects of the ground plane on the antenna’s wideband properties, to enable the realization of a conformal antenna without the loss of the antenna’s broadband characteristics, a radian sphere theory is proposed for bandwidth improvement. Microstrip to parallel strip line balun is proposed as the feeding structure of the spiral antenna. This balun has very large bandwidth ranging from 2 GHz to 14 GHz. However, the separation of the ground plane and the spiral arms at quarter wavelength at lower frequencies deteriorate the radiation patterns at middle and higher frequencies. In order to improve the patterns, frequency selective structure is proposed to embed in the cavity of the spiral antenna. The optimized frequency selective surface improves the radiation pattern while maintaining the other parameters such as the gain, bandwidth and axial ratio. All the proposed designs are fabricated and measured. Both simulated and measured results have shown good agreements. Finally, the results show that the proposed Archimedean spiral antenna is the most suitable candidate for above mentioned applications because good circularly polarized unidirectional radiation patterns and high gain of 8 dB to 11.2 dB with bandwidth of more than 140% is obtained.
CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF AWARDS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER I

INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Problems Statement ... 2

1.3 Research Contribution .. 4
1.4 Objectives of Study..5
1.5 Scope of Study..5
1.6 Dissertation Overview..6

CHAPTER II LITERATURE REVIEW..8
2.1 Introduction ...8
2.2 Spiral Antenna as a Frequency Independent Antenna ..9
2.3 Characteristics of Antenna...10
 2.3.1 Return Loss ..11
 2.3.2 Radiation pattern ...12
 2.3.3 Gain ..14
 2.3.4 Polarization ...14
2.4 Basic Principles of Operation for Spiral Antenna ..16
2.5 Techniques for Optimizing Spiral Antenna ..19
 2.5.1 Dielectric Loading Effects ...19
 2.5.2 The Radian sphere concept ..20
 2.5.3 Mutual Coupling ..21
2.6 Previous Work on the Spiral Antenna ...21
2.7 Spiral Backing Techniques ...25
 2.7.1 Absorber-filled Cavity ...25
 2.7.2 Lossy Cavity ..26
 2.7.3 Ground Plane ..27
 2.7.4 FSS Embedded between Spiral Antenna and Ground Plane28
2.8 Feeding Systems for Spiral Antenna ...29
 2.8.1 Proposed Microstrip to Parallel Strip lines Balun ...31
2.9 Overview of Frequency Selective Surface Structures ...32
2.9.1 Element Geometry .. 34
2.9.2 Dielectric Substrates ... 36
2.10 Conclusion ... 36

CHAPTER III RESEARCH METHODOLOGY ... 37

3.1 Introduction ... 37
3.2 Methodology .. 38
3.3 Mathematical Formulations of the Spiral Antenna 40
 3.3.1 Choosing for Suitable Substrate and Backing Technique 41
3.4 Feeding Techniques of Spiral Antenna .. 42
 3.4.1 Tapered microstrip lines ... 43
3.5 FSS Design and Formulation .. 47
 3.5.1 Mathematical Formulation of FSS .. 47
3.6 Simulation, Fabrication and Measurement Procedures 51
3.7 Measurement Procedures in the Anechoic Chamber 51
3.8 Conclusion .. 56

CHAPTER IV PERFORMANCE INVESTIGATION OF ARCHIMEDEAN
SPIRAL ANTENNA BASED ON SIMULATION ANALYSIS 57

4.1 Introduction ... 57
4.2 Characteristics of Spiral Antenna Feeding with Discrete Port 57
 4.2.1 Effects of Dielectric Substrate without Air Cavity 58
 4.2.2 Effects of Dielectric Substrate with Air Cavity .. 64
 4.2.3 Effects of the Physical Separation of the Spiral Arms and the Ground Plane
... 70
4.3 Optimization of Archimedean Spiral Antenna .. 76
 4.3.1 Effects of Arm Width .. 77
 4.3.2 Effects of Arm Spacing .. 81
4.3.3 Effects of Inner Radius ... 85
4.4 Mathematical Formulation and Analysis of the Active Region of ASA 89
4.4.1 Analysis of the Active Region of Spiral Antenna 93
4.5 Conclusion ... 98

CHAPTER V ARCHIMEDEAN SPIRAL ANTENNA INTEGRATED WITH BALUN ... 99
5.1 Introduction .. 99
5.2 Characteristics of Spiral Antenna Feeding with Balun 99
5.2.1 Microstrip to parallel strip balun design ... 98
5.2.3 Back to Back Balun design .. 103
5.2.4 Measurement of Back to Back Balun Design 105
5.3 Integration of the Spiral Antenna with Balun .. 107
5.3.1 Spiral Antenna on a Moveable Ground plane 109
5.3.2 The Polarization of the Antenna ... 115
5.4 Measurement of Spiral Antenna with Balun .. 118
5.5 Conclusion ... 127

CHAPTER VI SPIRAL ANTENNA EMBEDDED WITH FREQUENCY SELECTIVE SURFACE .. 128
6.1 Introduction .. 128
6.2 Physical Parameters of Frequency Selective Surface 128
6.2.1 FSS Shapes .. 129
6.3 Square Loop FSS Design Parameters ... 132
6.3.1 Dielectric Substrate ... 132
6.3.2 Square Loop Length ... 134
6.3.3 Square Loop Width ... 135
6.4 Archimedean spiral antenna embedded with Frequency selective surface 136
6.5 Optimization of Spiral Antenna with FSS ... 142
6.6 Measurement Results .. 151
6.7 Conclusion ... 154

CHAPTER VII CONCLUSION AND RECOMMENDATION 155

7.1 Conclusions ... 155
7.2 Future work ... 158
 7.2.1 WAVES Concept Applications on Spiral Antenna 159
 7.2.2 Low Q Antenna Designs .. 160

REFERENCES ... 161
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO. OF TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison between previous works</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison between the Baluns</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Performances of FSSs shapes</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>The dimensions of the balun</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Loop parameters at 5GHz</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical thickness for variation of substrate</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Size Increment of the spiral antenna</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Details position of the active region</td>
<td>95</td>
</tr>
<tr>
<td>4.4</td>
<td>The maximum current distribution</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of the balun with previous baluns</td>
<td>106</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary of the performance of the ASA</td>
<td>159</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison of ASA and the previous works</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Awards</td>
<td>170</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO. OF FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of two arm Spiral Antenna</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The return loss of Wideband antenna</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Radiation Patterns</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Linear Polarization</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Circular Polarization</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Band theory for mode 1 excitation</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Cut open FVTD model of the spiral antenna</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>ASA with ring absorber material</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Spiral antenna on absorber-filled cavity</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Spiral Antenna on lossy cavity</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Wideband antenna on ground plane</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Antenna with FSS layers</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic for unbalanced to balanced</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>A single microstrip to parallel strip lines balun</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>Four basic FSS</td>
<td>33</td>
</tr>
<tr>
<td>2.16</td>
<td>Common FSS element Shapes</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.17</td>
<td>The frequency response</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of the design</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic view of the ASA</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Spiral antenna with discrete port</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Configuration of a balun</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Square loop FSS schematic</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>S-parameter Measurement set up</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Gain Measurement set up</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Configuration of two arm ASA without air cavity</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of S11 on different permittivity</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of AR on a different permittivity</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of gain on a different permittivity</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of radiation pattern on different permittivity</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of radiation pattern on different permittivity</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Configuration of two arm ASA with air cavity</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of S11 on different substrates</td>
<td>65</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of axial ratio on a different permittivity</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of gain on a different permittivity</td>
<td>67</td>
</tr>
<tr>
<td>4.11</td>
<td>Comparison of S11 on different substrate thicknesses</td>
<td>68</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison of axial ratio on different thicknesses</td>
<td>68</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of gain on different substrate thicknesses</td>
<td>69</td>
</tr>
</tbody>
</table>
4.14 Comparison of S11 at GP different positions 72
4.15 Comparison of gain at GP different 72
4.16 Comparison of axial ratio 73
4.17 Radiation patterns at 3.1GHz, 6.85GHz and 10.6GHz 75
4.18 Radiation patterns at 3.1, 6.85 and 10.6GHz 75
4.19 Comparison of Radiation Efficiency 77
4.20 Effects of Arm width 79
4.21 Effects of Arm spacing 83
4.22 Effects of inner radius 87
4.23 Active region of ASA based on Radiation band theory 90
4.24 Current distribution of two arms ASA 95
4.25 Calculation and simulation results of active region of ASA 96
4.26 Calculation and simulation results of active region of ASA 97
4.27 Phase current flowing on ASA 98
5.1 Designed Balun 101
5.2 S-parameter (return loss) of single balun 101
5.3 S-parameter (Impedance) of single balun 102
5.4 Back to back balun design 103
5.5 Simulation of return loss and insertion loss 103
5.6 S-parameter (impedance matching) 104
5.7 Surface Currents at 2.5 GHz
5.8 Fabrication and Measurement of Balun
5.9 Configuration of the balun with a SMA connector
5.10 Configuration of the Spiral antenna with the balun
5.11 Return loss
5.12 Impedance views at (r_1=0.7mm, w=s=2mm and N=8)
5.13 Comparison between S11 at GP different positions
5.14 Comparison between gain at GP different positions
5.15 Radiation patterns for 3.1GHz at GP infinite
5.16 Radiation patterns at (a) 3.1GHz, (b) 4GHz and (c) 6GHz
5.17 Comparison of axial ratio (r_1=0.7mm w=s=2mm and N=8)
5.18 Comparison of co and cross polarization
5.19 Fabricated Spiral antenna on a moveable ground plane
5.20 Comparison between measurement and simulated S11
5.21 Comparison between measurement and simulated Gain
5.22 Effects of different GP position on the return loss
5.23 Effects of different GP position on the gain
6.1 The structures; SL FSS, Dipole and Cross Dipole FSSs
6.2 FSS responses on different shapes
6.3 SL FSS parameters analysis
6.4 Substrate thickness on FSS 134
6.5 The effect of varying element length 135
6.6 The effect of varying element width 136
6.7 Schematic view of the ASA embedded with FSS 137
6.8 Comparison of S11 Spiral only and with FSS-1 design 138
6.9 Comparison of pattern spiral only and spiral with FSS 140
6.10 Comparison of gain of spiral only and spiral with FSS 140
6.11 Comparison of axial ratio of spiral only and spiral with FSS 141
6.12 FSS structures 143
6.13 Different Periodicity 144
6.14 Comparison of S11 Spiral with different FSS periodicity 145
6.15 Comparison of pattern of spiral with and without FSSs 147
6.16 Comparison of gain of spiral only and spiral with FSS 147
6.17 Comparison of axial ratio 148
6.18 Comparison of RHCP and LHCP for spiral with FSS-3 151
6.19 Fabricated structures 152
6.20 Comparison of the simulated and measured return loss 153
6.21 Comparison of the simulated and measured gain 154
7.1 Planar arrays based on WAVES concept 160
Publications

Proceedings

Journals

List of Awards

i. GOLD PRIZE “Archimedean Spiral Antenna on Moveable Ground Plane” Exhibited at the Seoul International Invention Fair (SIIF) 2014, in Seoul, South Korea.

ii. SILVER MEDAL “Archimedean Spiral Antenna on Moveable Ground Plane” Invention and Innovation Awards for Malaysia Technology Expo (MTE) 2014, in Kuala Lumpur, Malaysia.

iii. BRONZE MEDAL “Archimedean Spiral Antenna on Moveable Ground Plane for UWB Applications” Exhibited at Research and Innovation Fest (R & I) 2013, in University Tun Hussein Onn Malaysia (UTHM).
CHAPTER I

INTRODUCTION

1.1 Introduction

Wide band is a transmission technology in which information is transmitted over large operating bandwidth. Such technology has been utilized for decades mostly for military related systems because more information and applications can be carried through the radio frequency channels with a high data rate and accuracy [1]. Wideband applications are numerous including ground penetrating radar systems, military communications, satellite communications, direction finding systems, vehicular radar systems and wireless communications [2]. In order to make the transmission and reception of an wide band system over the frequency range of 3.1 GHz to 10.6 GHz; it is required to have a high gain antenna, with good impedance matching and VSWR less than 2 throughout the entire band [2-3]. Therefore, Archimedean spiral antenna is good candidate to be used in wideband applications since it has met the above mentioned requirements. Archimedean spiral antenna has received huge interest over the last two decades due to its wide impedance bandwidth, high efficiency, nearly unidirectional
radiation pattern, low profile, stable impedance characteristic and circular polarization over the last two decades [4].

There are three different designs of spiral antennas. The first design of spiral antenna is by shaping it as a single arm spiral antenna, which is designed for some narrow-band applications. The second design is the two arm case, which is the minimum number of arms needed for single-mode broadband operation. The third design is the multi arm case, which is designed when two broadband modes are needed. This means, in order to achieve two broadband modes at least three arms are required. Therefore, in this research the second design which is the two arm case is discussed due to its advantages over the other two cases. It is because the two arm Archimedean spiral antenna has better axial ratio than the single arm Archimedean spiral antenna, which means the two arm case has better circular polarization compared to the single arm case. The two arm spiral antenna has a simple feed (e.g. Microstrip to parallel strip balun) and less complex geometry design compared to the multi arm spiral. It is because the multi arms spiral has complex geometry design and feeding systems such as a beam feeding network.

In summary, several optimizations techniques are proposed in this study such as loading lower permittivity dielectric substrate, radian sphere concept, reducing mutual coupling, moveable ground plane and embedding frequency selective surface structure in the cavity of the spiral. Therefore, these five optimization techniques leads to the invention of a new design of two arm Archimedean spiral antenna backed by cavity with large bandwidth, high gain, unidirectional pattern with circular polarization and with higher efficiency.

1.2 Problems Statement

A common approach used to cover a large frequency range which encompasses many different communication systems is to employ a separate antenna for each system.
An advantage of this approach is that it meets the specific needs of each communication system. However, when a platform such as an airplane, ship or automobile requires the use of many communication systems, this approach has several problems such as space, payload, cost and electromagnetic compatibility/interference (EMC/EMI). Therefore, there is a significant interest in antennas which possess compact size, have multifunctional characteristics, have large bandwidth (>20%) and have high gain.

In the design of an antenna that meets the above requirements, there are several challenges that must be taken into account. First of all, the antenna must have sufficient bandwidth to facilitate the integration of multiple antennas into a single aperture. Since the applications of interest require bandwidths in excess of 10:1, this work focuses on wide-band antenna such as the Archimedean spiral antenna. Since the spiral antenna belongs to the class of frequency independent antennas, it is easily capable of bandwidth greater than 10:1 [5]. Such antennas are considered frequency independent because their pattern, impedance and other parameters vary little with frequency as compared to a multi-band antenna which can exhibit considerable variation. These characteristics make the spiral an ideal candidate for replacing a variety of antennas. Apart from the advantages of spiral antenna, there are disadvantages in spiral antenna, such as the spiral antenna has a low gain and bidirectional radiation pattern. There are several techniques to get rid of the bidirectional radiation pattern, such as by using an absorber-filled cavity, a lossy cavity, and conducting ground plane.

Therefore, in this project a technique is proposed to get rid of this problem, which is to construct a moveable ground plane, which maintains quarter wavelength spacing between the spiral and the ground plane in the vicinity of the active region of the spiral. However, by introducing this technique; antenna’s patterns at higher frequencies deteriorate. In order to improve the patterns and to minimize the splitting of the patterns at higher frequencies; a frequency selective surface structure is embedded between the spiral antenna and the ground plane. This new design can substantially enhances the radiation pattern properties of the antenna since the reflected field is in phase with that directly radiated by the antenna itself. In addition, by embedding the FSS structure in the
design minimizes the gain fluctuations caused by the ground plane. However, FSS structure together with the ground plane reduces the antenna’s bandwidth. One way to minimize the FSS reduction of the bandwidth is applying the radian sphere theory in order to make the antenna electrically larger and to obtain larger bandwidth.

As a result of the optimized techniques such as the ground plane (for unidirectional radiation pattern), radian sphere theory (for maintaining wideband bandwidth) and embedding FSS in the cavity of the spiral antenna (for better performance of radiation pattern), it is expected to come up with new spiral antenna prototype, which has enhanced unidirectional radiation pattern, wide bandwidth (at least 100% of bandwidth of return loss better than -10dB) and high gain which enables the antenna to detect the enemy radar in a large range of distance compared to the present radar systems.

1.3 Research Contribution

Throughout this research work several major contributions have been achieved for Archimedean spiral antenna performance. In this section a summary of these major contributions are presented:

1. A prototype of wideband Archimedean spiral antenna has been designed with enhanced performance based on Radian sphere theory.
2. Universal design of spiral antenna has been used which leads to the elimination of multiple antennas configurations on wideband systems.
3. A tapered microstrip to parallel strip lines balun is proposed with new tapered design based on mathematical formulation is proposed as a feeding technique for wideband antennas.
4. Comprehensive study is carried out for different structures of frequency selective surface in order to improve the antenna’s performance.
5. Band stop frequency selective surface design based numerical synthesis is developed.

1.4 Objectives of Study

This project has the following objectives:

i. To design wideband Archimedean spiral antenna on a moveable ground plane placed at a quarter wavelengths for selected design frequencies in order to achieve high gain antenna with circularly polarized unidirectional radiation pattern.

ii. To design and embed frequency selective surface structure in the Archimedean spiral antenna cavity in order to improve antenna’s radiation pattern performance.

1.5 Scope of Study

This project focuses on the performance investigations of Archimedean spiral antenna based on radian sphere theory, FSS structures and microstrip to parallel strip balun within wideband frequency range (3.1-10.6GHz). The effects of the dielectric materials (free space $\varepsilon_r=1$, Rogers RT 5870 $\varepsilon_r=2.33$, FR-4 $\varepsilon_r= 4.3$ and Rogers RO3030 $\varepsilon_r=10.2$) and moveable ground plane placed at quarter wavelengths for selected design frequencies including 2GHz, 3.1GHz, 5GHz, 6.85GHz and 10.6GHz on the performance of the spiral antenna are investigated, in order to achieve a bandwidth of 100% at the return loss of the antenna; which below -10dB, high gain of up to 10dB and unidirectional radiation pattern with circular polarization using discrete port as the
REFERENCES

