FPGA-BASED DIGITAL CONTROLLER FOR DC-DC CONVERTER

DIYYA HIDAYAH BT ABD. RAHMAN

A thesis submitted in
fulfillment of the requirement for the award of the
Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

JUNE 2014
This thesis presents a FPGA-based digital controller for a DC-DC converter. The converter topologies chosen in this project is Non-Inverting Buck-Boost converter. The main difference from DSP-based solution is that FPGA allows simultaneous execution of all control procedures. The control algorithm has been developed using Verilog language based on the voltage control loop. The FPGA switching controller has been designed as simple as possible while maintaining the accuracy and dynamic response. The DE1 board is used to control the main circuit. Simulations and experimental results show the feasibility of the proposed method, opening interesting possibilities in motion and power electronics converter control.
ABSTRAK

CONTENTS

TITLE i
STUDENT'S DECLARATION ii
ACKNOWLEDGMENT iii
ABSTRACT iv
ABSTRAK v
CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF SYMBOLS AND ABBREVIATIONS xi
LIST OF APPENDICES xii

CHAPTER 1 INTRODUCTION
1.1 Introduction 1
1.2 Objective of the Project 2
1.3 Problem Statement 2
1.4 Scope of Project 3
1.5 Thesis Outline 3

CHAPTER 2 LITERATURE REVIEW
2.1 Literature Review 5
2.2 List of Paper Review 7
2.3 Buck-Boost Converter Topologies 11
 2.3.1 The inverting topology 12
 2.3.2 A buckconverter followed by a boost converter 13
CHAPTER 3 METHODOLOGY

3.1 Introduction 14
3.2 Development of FPGA-based controller algorithm 16
3.3 Switching configuration 18
3.4 Control system implementation on FPGA 24
 3.4.1 Analog-digital conversion 24
 3.4.2 PWM generator component 26
3.5 Hardware construction of Non-Inverting Buck-Boost Converter 28
 3.5.1 Controller Coding 28
3.6 Hardware construction of Non-Inverting Buck-Boost Converter 30

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 35
4.2 Simulation result for Buck-Boost Converter 35
4.3 Comparation between calculation results and simulation results 47
4.4 Result of Verilog code for switching controller 48
 4.4.1 Hardware looping result 49

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORKS

5.1 Conclusions 50
5.2 Recommendation for Future Works 51

REFERENCES 52
APPENDIX 55
LIST OF TABLES

3.1 The converter switching configuration .. 19
3.2 Parameters of generic PWM ... 27
4.1 Overall simulation results ... 46
4.2 THD Summaries for All Input Range .. 47
4.3 Comparison between calculation and simulation 48
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Non-Inverting Buck-Boost Topology</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Project Flowchart</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>FPGA implementation process</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>Simulation of Buck-Boost DC-DC Converter</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Block diagram of the whole system.</td>
<td>17</td>
</tr>
<tr>
<td>3.5</td>
<td>An Ideal Buck-Boost Converter</td>
<td>18</td>
</tr>
<tr>
<td>3.6</td>
<td>The series of Non-Inverting Buck-Boost converter</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>Closed switch analysis</td>
<td>21</td>
</tr>
<tr>
<td>3.8</td>
<td>Open switch analysis</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Voltage control loop</td>
<td>23</td>
</tr>
<tr>
<td>3.10</td>
<td>Simple ADC</td>
<td>25</td>
</tr>
<tr>
<td>3.11</td>
<td>Waveform of a Pulse In-Phase with the PWM Period</td>
<td>26</td>
</tr>
<tr>
<td>3.12</td>
<td>Declaration of the Verilog</td>
<td>28</td>
</tr>
<tr>
<td>3.13</td>
<td>Code for PWM Generating</td>
<td>29</td>
</tr>
<tr>
<td>3.14</td>
<td>Coding for Counter</td>
<td>29</td>
</tr>
<tr>
<td>3.15</td>
<td>The Coding for Selection of Output</td>
<td>30</td>
</tr>
<tr>
<td>3.16</td>
<td>Altera DE1 board</td>
<td>31</td>
</tr>
<tr>
<td>3.17</td>
<td>Constructing of Non-Inverting Buck-Boost Converter</td>
<td>32</td>
</tr>
<tr>
<td>3.18</td>
<td>Hardware testing for the Buck-Boost Converter</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>The whole circuit of the Non-Inverting Buck-Boost Converter</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Simulation Circuit for 1volt Input</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulation Result for 1volt Input with THD</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulation Circuit for 2volt Input</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Simulation Result for 2volt Input with THD</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.6</td>
<td>Simulation Circuit for 3volt Input</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Simulation Result for 3volt Input with THD</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Simulation Circuit for 4volt Input</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Simulation Result for 4volt Input with THD</td>
<td>39</td>
</tr>
<tr>
<td>4.10</td>
<td>Simulation Circuit for 5volt Input</td>
<td>40</td>
</tr>
<tr>
<td>4.11</td>
<td>Simulation Result for 5volt Input with THD</td>
<td>40</td>
</tr>
<tr>
<td>4.12</td>
<td>Simulation Circuit for 6volt Input</td>
<td>41</td>
</tr>
<tr>
<td>4.13</td>
<td>Simulation Result for 6volt Input with THD</td>
<td>41</td>
</tr>
<tr>
<td>4.14</td>
<td>Simulation Circuit for 7volt Input</td>
<td>42</td>
</tr>
<tr>
<td>4.15</td>
<td>Simulation Result for 7volt Input with THD</td>
<td>42</td>
</tr>
<tr>
<td>4.16</td>
<td>Simulation Circuit for 8volt Input</td>
<td>43</td>
</tr>
<tr>
<td>4.17</td>
<td>Simulation Result for 8volt Input with THD</td>
<td>43</td>
</tr>
<tr>
<td>4.18</td>
<td>Simulation Circuit for 9volt Input</td>
<td>44</td>
</tr>
<tr>
<td>4.19</td>
<td>Simulation Result for 9volt Input with THD</td>
<td>44</td>
</tr>
<tr>
<td>4.20</td>
<td>Simulation Circuit for 10volt Input</td>
<td>45</td>
</tr>
<tr>
<td>4.21</td>
<td>Simulation Result for 10volt Input with THD</td>
<td>45</td>
</tr>
<tr>
<td>4.22</td>
<td>Simulation of Verilog code</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

FPGA - Field-programmable gate array
VHDL - Very High Speed Integrated Circuit Hardware Description Language
PWM - Pulse Width Modulation
ADC - Analog-to-Digital Converter
SoPCs - System or Proxy Cache Server
PSIM - Physical Security Information Management
PLD - Programmable Logic Device
DSP - Digital Signal Processor
I/O PORTS - Input-Output ports
EMI - Electromagnetic Interference
ASIC - Application-specific Integrated Circuit
SiC - Silicon Carbide
PI - Proportional-Integral
PFC - Power Factor Correction
ESR - Equivalent Series Resistance
NIBBB - Non-Inverting Buck-Boost
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Source code</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>Datasheets</td>
<td>38</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter presents the introduction of the thesis including a short overview of Non-Inverting Buck-Boost DC-DC converter and also introduction to FPGA. Furthermore, it details the purpose of the project, continuing with the objectives as well as the scope of the project and finishing with the outline of the thesis.

1.1 Introduction

Usually, power electronics circuits and systems have been controlled in industry using linear controllers combined with non-linear procedures such as pulse width modulation (PWM). [1].

The FPGA’s are a reconfigurable digital logic devices which contain a variety of programmable logic blocks called Logic Elements (LEs) which can be configured using a Hardware Description Language (HDL). The main advantages of FPGA are wide parallelism, deep pipelining, and flexible memory architecture. FPGAs show great potential for real-time hardware emulation, control applications, power electronics applications such as motor control, active power filters, predictive control algorithms, DC-DC power converters, or multilevel inverters. [1]
Non-inverting buck boost converters are capable of achieving a positive output voltage that is higher or lower than its input voltage. As battery powered devices are becoming more and more popular, this topology is becoming more attractive as it can make the use of the discharge cycles of a battery. When a battery input voltage is higher than its output voltage, a buck boost converter works in the buck mode of operation. In the buck mode operation, the converter decreases the input voltage to the necessary level for use at its output. When the battery input voltage is lower than the output voltage, the buck boost converter works in the boost mode of operation wherein the input voltage is increased to a level needed at output. It is relatively easy to implement the control in either pure buck mode of operation or a pure boost mode by leaving some power switches turned on or off.[2].

1.2 Objective of the Project

The intention of this research project is to develop a control system of Converter using Verilog language. In this case, the Non-Inverting Buck-Boost DC-DC Converter is the chosen topology for the converter for this research project. The requirement of this project is to keep the output voltage in stable condition even when the input are varies. The objectives of the research are:

a) to write a Verilog language to control the performance of the converter.

b) to construct and design a Buck-Boost converter with updated topology.

c) to demonstrate stability of output voltage using DE board as a controller.

1.3 Problem statement

It is well know that the digital control offers advantages over analog control. They own lower power consumption and enhanced reliability due to the lower number of
components involved in the design. However, the digital control have specific constraints such as some design parameters such as algorithm delay will occur if high switching frequency are required.

Power electronics and drive usage are nowadays very sophisticated as this digital technology is of big interest since it allows implementing quite easily complex control strategies. Analog controllers despite their drawbacks such as parameter drifting or lack of integration, still remain the reference in terms of rapidity and bandwidth. That is the reason why digital controller execution times must be reduced while keeping the inherent flexibility of the chosen digital solution. This can only be achieved with the help of efficient digital platforms. Today, such digital platforms exist, some of them also integrate analog functions like Analog-to-Digital Converter (ADC) and they can be developed by the use of high performance design tools such as Field Programmable Gate Arrays (FPGAs). These components take benefits of a high integration rate. Furthermore, the recent FPGAs can be considered as real SoPCs since they can integrate high-performance processor cores and also, in some cases, ADCs. Thus, by using an FPGA-based controller, the designer is able to build a fully dedicated digital system that is perfectly adapted to the algorithm to implement.

1.4 Scope of project

The scope of this project is to design and implement FPGA-based controller for a DC-DC converter. In this case, the Buck-Boost converter were chosen.

1.5 Thesis Outline

This report is arranged and distributed into five chapters. Chapter 1 has presented a brief introduction of the project mainly about FPGA and the topologies of the converter, the problem statements, the objectives of the project and its scope, and the limitations identified using the proposed approach.
Chapter 2 of the dissertation includes a literature survey related to this project as per referred to previous studies and results obtained by past researchers. It also contains some important findings from past researchers such as a review of existing database search algorithms presentations. Their respective advantages and disadvantages, with specific references.

Together with the literature review carried out in Chapter 2, has helped with the search for systolic array architecture that could potentially improve performance and cost. Chapter 3 provides a methodology in how this project is conducted in sequence.

Chapter 4 contains the results and findings of the project. A simulation is run on PSIM software and hardware performance are compared with the simulation results. Simulation result is analysed and studied.

Lastly is chapter 5 where this chapter concludes the dissertation. It presents a summary of research achievements together with a discussion of their significance. Some recommended future work also presented in this chapter.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

FPGA is a short for Field-Programmable Gate Array, a type of logic chip that can be programmed. An FPGA is similar to a PLD, but whereas PLDs are generally limited to hundreds of gates, FPGAs support thousands of gates. They are especially popular for prototyping integrated circuit designs. Once the design is set, hardwired chips are produced for faster performance.

Compare with DSP, FPGA has flexibilities in defining bit-width and I/O ports. Short bit width saves hardware resource and processing time. Long bit guarantees accuracy. Rich I/O ports mean FPGA-based system can be developed to control power electronics device requires more switching signals since one switching signal is generated by one port. Parallel processing makes FPGA have high efficiency. The design in FPGA is mapped into actual circuit and the processing is clock triggered. Precision will be better [4].

In terms of converter design, some of the research paper has been surveyed to choose the converter desired. V.D. Yurkevich et al., [5] have design a controller for Buck-Boost converter using two controllers: the designed above inner switching controller and an outer continuous controller. The presented method of switching regulator design allows us to obtain the desired transients for buck-boost converter under uncertainty in model description and in the presence of unknown external disturbances.
Soft-switching Buck Boost converter using pulse current regenerative resonant snubber have been proposed by Y. Konishi and Y.F.Huang [8]. This type of Buck Boost converter has high reliability and simplicity of both the power circuit and control compared to the active methods. The passive regeneration snubber has a simple circuit configuration and wide operation region of the soft-switching action.

P. Olranthichachat, A. Saenthon and S. Kaitwanidvilai et al. [10], have suggested the Genetic Algorithm based fixed-structure H loop shaping control of a Buck Boost converter. H loop shaping control is an efficient method for designing a robust controller. This approach requires only a desired open loop shape in frequency domain. It was proved that the robust performance of the proposed controller is better than the conventional PI controller. It was valid and flexible as proposed in this paper. A new isolated bidirectional Buck Boost PWM converter as proposed by M. Delshad and H. Farzanehfard et al. [11], was using a simple PWM controller and it has minimum active switch in power stages.

Four switch Buck Boost converter was proposed by Marcos Orellana, Stephen Petibon, Bruno Estibals, and Corrine Alonso et al. [12], for photovoltaic DC-DC power applications. The switches were commute by two. The four switches (synchronous structure instead of asynchronous), increase the converter efficiency since the commutations are done very quickly compared to natural diode commutations. Nevertheless, the control must be done carefully in order to avoid short-circuits on the inductor and defective functioning. Its characteristics made it suitable for photovoltaic applications.

Ray-Lee Lin and Rui-Che Wang [13] has suggested a Non-Inverting Buck-Boost Power-Factor-Correction Converter with Wide Input-Voltage_range Applications. The Buck-Boost proposed in this research was non-inverting and the applications were wide due to the input-voltage range.

A Novel Method of Implementing Real-Time Buck-Boost Converter with Improved Transient Response for Low Power Applications was suggested by Boopathy, K [14]. It has the capability of skipping over higher loss interface stages such as buck-boost mode in the case of a real time buck-boost converter significantly improves the efficiency from 16% and 19% and ripple content has been reduced from 14 % to 4% of the circuit topology.
A research from Bo-Han Hwang [15], suggested an average-current-controlled techniques for a low-voltage Buck Boost converter. It can reduce some power management problems, such as size, cost, design complexity, simple compensation design, and EMI. The maximum efficiency was 72% at switching 1MHz frequency. Chin-Hong Chen [16] also had the same idea on controlling the Buck Boost by using the average-current mode controlled but the research was for the integrated non-inverting Buck Boost converter. It was only suitable for portable electronic applications and it can provide load current up to 300 mA.

There were some research that focused on controlling the converter using FPGA based [1], [2], [4], [5], [6]. Most of the research just focused on one basic topology such as just Buck and also Boost by itself. It has proven that the FPGA based controller have become one of the solution in controlling the converter. In overall, implementing the control algorithm in hardware description language (HDL) allows high flexibility and technology independence. The same controller can be directly synthesized into any other FPGA or even in an ASSIC, or it can also be added to other logic blocks forming a more complex multi-task system in single chip. Solutions based on specific hardware, that allows high concurrency, are suitable to be used in power electronics and motion control applications with nonlinear control approach like switching control in sliding mode does[1].

2.2 List of Paper Review

<table>
<thead>
<tr>
<th>RESEARCHER (S)</th>
<th>TITLE</th>
<th>CONTROLLER METHODS</th>
<th>RESULT /ADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. D. Yurkevich</td>
<td>Design Of Controller For Buck-Boost Converter</td>
<td>Closed-loop system with an inner switching controller and outer continuous controller</td>
<td>Can obtain the desired transients for Buck-Boost converter under uncertainty in model description and in the presence of unknown external disturbances</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Y. Konishi and Y.F. Huang</td>
<td>Soft- Switching Buck Boost Converter Using Pulse Current Regenerative Resonant Snubber.</td>
<td>Buck-Boost converter with soft-switching topology using a pulse current regenerative snubber circuit.</td>
<td>It has high reliability and the simplicity of both the power circuit and control compared to the active methods.</td>
</tr>
<tr>
<td>Vineeta Agarwal and Anupam Kumar</td>
<td>SiC Based Buck-Boost Converter</td>
<td>Buck-Boost converter using SiC diode CSD10060 and MOSFET (IRF-9530).</td>
<td>Recovery losses are very low as compared to that of the Si diodes due to the very low or negligible value of the reverse recovery current flowing through the SiC diodes as compared to the reverse recovery current flowing through the Si diode.</td>
</tr>
<tr>
<td>P. Olanthichachat, A. Saenthon and S. Kaitwanidvilai</td>
<td>Genetic Algorithm Based Fixed- Structure H_{∞} Loop Shaping Control Of A Buck-Boost Converter</td>
<td>Buck-Boost converter with current mode control requires only a desired open loop shape in frequency domain.</td>
<td>Controller has good robust performance and can be applied for the buck-boost converter and the proposed controller is better than that of the conventional PI controller.</td>
</tr>
<tr>
<td></td>
<td>Converter</td>
<td>Power density of converter is high. Also this converter can operate buck-boost in either direction therefore it can operate under wide range variation of voltage source.</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>M.Delshad, H.Farzanehfard</td>
<td>A New Isolated Bidirectional Buck-Boost PWM Converter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Converter was controlled by PWM signal and it have minimum active switch in power stages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcos Orellana, Stéphane Petibon, Bruno Estibals, Corinne Alonso</td>
<td>Four Switch Buck-Boost Converter For Photovoltaic Dc-Dc Power Applications</td>
<td>Suitable for photovoltaic applications. High performance and the possibility of adaptation to different input and output time-varying voltage values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For switch Buck-Boost converter with four switches commute by two. The four switches increase the converter efficiency since the commutations are done very quickly compared to natural diode commutations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray-Lee Lin and Rui-Che Wang</td>
<td>Non-Inverting Buck-Boost Power-Factor-Correction Converter With Wide Input-Voltage-Range Applications</td>
<td>The proposed non-inverting buck-boost based PFC converter has both step-up and step-down conversion functionalities to provide positive DC output-voltage. Very high efficiency (90%).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using a PFC controller L6562 and a high-side gate driver IR2117.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boopathy.KDr. BhooopathyBagan K</td>
<td>A Novel Method Of Implementing Real-Time Buck Boost Converter With Improved Transient Response For Low Power Applications</td>
<td>Real Time Buck–Boost Converter. The Novel method is to add interface modes, which are a combination of buck and boost operating topologies. Capability of skipping over higher loss interface stages such as buck–boost mode in the case of a real time buck–boost converter significantly improves the efficiency from 16% and 19% and ripple content has been reduced from 14 % to 4% of the circuit topology.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Bo-Han Hwang, Bin-Nan Sheen, Jiann-Jong Chen, Yuh-Shyan Hwang and Cheng-Chieh Yu</td>
<td>A Low-Voltage Positive Buck-Boost Converter Using Average-Current-Controlled Techniques</td>
<td>It consists of one LC filter, ramp generator circuit, average-current-controlled circuit, and compensator network, active-current-sensing circuit, driving circuit, non-overlapping circuit and positive buck-boost converter including four power transistors. Reduce some power management problems, such as size, cost, design complexity, simple compensation design, and EMI. The proposed low-voltage positive buck-boost converter using the active-current-sensing circuit and average-current-controlled techniques can work stably when the duty cycle is higher than 50% at 1MHz frequency.</td>
<td></td>
</tr>
<tr>
<td>Chin-Hong Chen, Chia-Ling Wei, and Kuo-Chun Wu</td>
<td>Integrated Non-Inverting Buck-Boost Dc-Dc Converter With Average-Current-Mode Control</td>
<td>Current-mode controller.</td>
<td>It can provide load current up to 300 mA. Therefore, it is suitable for portable electronic applications.</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Juan Carlos Ostos, Dylan Dah-Chuan Lu</td>
<td>Modeling And Analysis Of CCM Non-Isolated High Step-Up Interleaved Buck-Boost Dc/Dc Converters</td>
<td>The presented topology has two identical buck-boost converters connected in a parallel-input, series-output manner for boosting the output voltage.</td>
<td>An improved output voltage is reached by using this interleaved buck-boost topology instead of interleaved boost topology. Theoretically is infinity but practically loosens limit this. This new topology can serve as an alternative to the typically used transformer isolated converter topology.</td>
</tr>
</tbody>
</table>

2.3 Buck-Boost Converter Topologies

The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either more than or less than the input voltage magnitude. Two different topologies are called buck–boost converter. Both of them can produce a range of output voltages, from an output voltage much larger (in absolute magnitude) than the input voltage, down to almost zero. There are many applications however, such as battery-powered systems, where the input voltage can vary widely, starting at full charge and gradually decreasing as the battery charge is used up. At full charge, where the battery voltage may be higher than actually needed by the circuit being...
powered, a buck regulator would be ideal to keep the supply voltage steady. However as the charge diminishes the input voltage falls below the level required by the circuit, and either the battery must be discarded or re-charged; at this point the ideal alternative would be the boost regulator

2.3.1 The inverting topology

The output voltage is of the opposite polarity than the input. This is a switched-mode power supply with a similar circuit topology to the boost converter and the buck converter. The output voltage is adjustable based on the duty cycle of the switching transistor. One possible drawback of this converter is that the switch does not have a terminal at ground; this complicates the driving circuitry. Neither drawback is of any consequence if the power supply is isolated from the load circuit (if, for example, the supply is a battery) because the supply and diode polarity can simply be reversed. The switch can be on either the ground side or the supply side.

During operation as shown in Figure 2.1, when the FET switch on, the voltage across the inductor is V_{in} and the current ramps up at a rate of $\frac{di}{dt}=\frac{V_{in}}{L}$. While the FET switch is on, the entire load current is supplied by energy stored in the output capacitor. When the FET switch turns off, the inductor conduct in reverses polarity to keep the inductor current continuous. The voltage across the inductor is approximately V_{out}, and the inductor current decreases as a rate of $\frac{di}{dt}=-\frac{V_{out}}{L}$.

![Non-Inverting Buck-Boost Topology.](image)
During the off time, the inductor supplies current both to the load and to replenish the energy lost by the capacitor during the on time.

2.3.2 A buck (step-down) converter followed by a boost (step-up) converter

The output voltage is of the same polarity of the input, and can be lower or higher than the input. Such a non-inverting buck-boost converter may use a single inductor which is used for both the buck inductor and the boost inductor.

Like the buck and boost converters, the operation of the buck-boost is best understood in terms of the inductor's "reluctance" to allow rapid change in current. From the initial state in which nothing is charged and the switch is open, the current through the inductor is zero. When the switch is first closed, the blocking diode prevents current from flowing into the right hand side of the circuit, so it must all flow through the inductor. However, since the inductor does not like rapid current change, it will initially keep the current low by dropping most of the voltage provided by the source. Over time, the inductor will allow the current to increase slowly by decreasing its voltage drop. Also during this time, the inductor will store energy in the form of a magnetic field.
CHAPTER 3

METHODOLOGY

3.1 Introduction

It is a well known fact that the most important step in the research process is to define the problem as well as discussed the methods of study. Research methods are referring to how the researcher gets the information and analysed the result based on the research objective. At this point, the information and details of the flowchart sequence on how the project is performed and an explanation of each step is also provided.

For this project, PSIM software is used to perform the simulations in order to apply the construction of Buck-Boost converter. It has also used the Quartus II software to construct the code for the controller. This project focuses on the design and implementation of FPGA-based controller for Buck-Boost controller.
Figure 3.1: Project Flowchart

- START
- Literature review
- Construct Converter circuit
- Write a Verilog code for controller
- Upload to controller board
- Hardware looping
 - Run
 - YES
 - Analyze results.
 - NO
- Report Writing
- END
Figure 3.1 shows that at the early stage, the project starts by gathering information or literature research of the project. It starts by comparing the topologies for the converter and then chooses the most suitable one. As a result of this research, a suitable converter and the topologies is obtained to get the desirable results. All of the activities are organized in the literature review part.

The next stage is writing the Verilog code and performing the compilation using the Quartus II and doing the simulations in the PSIM software. Then, the converter was constructed simultaneously with constructing the coding for the controller. If there is an error, the coding needs to recheck and make the correction in order to produce good output. Finally, the language is downloaded into the DE board and then the results are discussed.

3.2 Development of FPGA-based controller algorithm.

A block diagram as shown in Figure 3.2 is basically the flow the FPGA development for the controller algorithm. It consists of three main parts, writing Verilog code for the switching controller, constructing the Buck-Boost converter and implementation of Altera DE1 FPGA board. These three parts are the main systems that will be focusing on this project. From figure below, it starting with builds a Verilog description to control the switching points. It is important to match it with the design of the controller system also with the hardware itself. Then, I/O pin assignment need to be done to verify the port that needed to be use during the process. The wrong assign of pin will cause the code to wrongly download to the board. Lastly, the physical implementation is to make sure that the controller code design can successfully control the controller of the Non-Inverting Buck-Boost converter.

![Figure 3.2: FPGA implementation process.](image-url)
As shown in Figure 3.3, the simulation of the converter is done using the PSIM software. The desired output for the converter is 5V at 1A current rating. In this case, the non-inverting Buck-Boost converter is been chosen due to its wide input-voltage-range applications and it can produce efficiency up to 90%. The PWM1 and PWM2 will be replaced by the input controller in the hardware implementations. The switches for the controller are N-MOSFET FQP5N50C.

![Simulation of Buck-Boost DC-DC Converter](image)

Figure 3.3: Simulation of Buck-Boost DC-DC Converter

![Block diagram of the whole system](image)

Figure 3.4: Block diagram of the whole system.
Figure 3.4 shows the reference example used along the project. The power stage is a non-inverting Buck-Boost converter with the following parameters: input voltage $V_{\text{out}}=5\text{V}$, $L=180\mu\text{H}$, $C=340\mu\text{F}$, capacitor ESR (equivalent series resistance) $R_C=10\text{k}\Omega$, and inductor DC resistance $R_L=3.3\text{k}\Omega$. The input voltage has to be regulated at $V_{\text{ref}}=5\text{V}$. The output ADC is measured by using an ADC with full scale voltage. A second ADC is used to close the loop of the system. This project describes a voltage control strategy, where the voltage ADC converts the output voltage to a digital language. The error between the desired and measured output voltage is processed by a digital controller to determine the value of the switch duty ratio. The digital pulse modulator (DPWM) generates the driving signals that control the Buck-Boost switches.

3.3 Switching configuration

The converter is improvised by the addition of the switch circuit switching usually it uses a semiconductor switch (MOSFET / IGBT / transistor) for an ideal buck-boost circuit (IBB) as the Figure 3.5 below, but the resulting output IBB thus inverting the polarity opposite to the voltage source.

![Figure 3.5: An Ideal Buck-Boost Converter](image-url)
To solve it and also improved efficiency so that added one additional switch on the circuit non-inverting buck-boost (NIBB) using two switches buck (Sbuck) and boost switches (Sboost) with two diodes buck (Dbuck) and the boost diode (Dboost) as shown in Figure 3.6 above.

The switch configuration will determine the state of the converter whether it is in Buck mode, Boost mode or even Buck-Boost mode. As shown in Table 3.1 below, there are two switches that will control the mode.

Table 3.1: The converter switching configuration.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Sbuck</th>
<th>Sboost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Buck</td>
<td>Switching PWM1</td>
<td>OFF</td>
</tr>
<tr>
<td>Mode Boost</td>
<td>ON</td>
<td>Switching PWM2</td>
</tr>
<tr>
<td>Mode Buck-Boost</td>
<td>Switching PWM1</td>
<td>Switching PWM2</td>
</tr>
</tbody>
</table>

Non-Inverting Buck-Boost (NIBB) circuit configuration settings done by adjusting the PWM signal on Sbuck and Sboost depending on the input voltage, if the input voltage is less than the set-point, then NIBB will work on boost mode, otherwise when the input
voltage is above the set-point value, then it will work on NIBB buck mode. And to maintain the output voltage set-point (steady state) then NIBB will work in buck-boost mode.

In buck mode, Sbuck will receive signals from the PWM1 switching signal, while Sboost received the switching signal from PWM2 with the value of duty-cycle (D) = 0, so the switch will open. Analysis of closed switches in buck mode; when Sbuck is ON (close), Dbuck will be in reverse-biased state and Dboost is in forward-biased state, then the inductor current will charge the supply load. Once the switch Sbuck is open Dbuck and Dboost is both in forward-biased state, then the current stored in the inductor will supply the load (discharging). With Vout value equation is as follows:

\[V_{\text{out}} = V_{\text{in}} \cdot D \quad (3.1) \]

In boost mode, Sboost will receive switching signal PWM2, while Sbuck received signal from PWM1 (duty-cycle = 1) and close. Analysis for the closed are as follows. When Sboost is ON (close) Dboost and Dbuck are in reverse-bias state, so the current will fill the inductor. Whereas in open switch, Sboost in open condition will trigger the Dbuck in reverse-biased mode and Dboost in forward-biased mode, then the current stored in the inductor will supply the load (discharging) coupled to the input voltage. With Vout value equation is as follows:

\[V_{\text{out}} = \left(\frac{1}{1-D} \right) \times V_{\text{in}} \quad (3.2) \]

In buck-boost mode, both switches Sbuck and Sboost received the switching signals from PWM1 and PWM2. In the Figure 3.7, shows the buck-boost circuit with the analysis of the closed switch which switches (Sbuck and Sboost) is ON (closed). This will cause the diode buck (Dbuck) triggered in reverse-biased so that current will charge the inductor L (charging) and inductor current (IL) raises to a maximum. With the analysis formula enclosed switches are as follows:
\[V_{in} = V \cdot L \]

\[V_{in} = L \times \left(\frac{di}{dt} \right) \]

\[V_{in} = L \times \left(\frac{di}{T_{on}} \right) (3.3) \]

Figure 3.7: Closed switch analysis

Figure 3.8: Open switch analysis

In the Figure 3.8 above shows the buck-boost circuit with an open switch analysis where both switches (Sbuck and Sboost) are OFF (open). The two diodes (Dbuck and Dboost)
worked in forward-biased current in the inductor L and will be a stand-alone supply (discharging) to load. With that the current formula open switch mode is as follows:

\[V_{out} = V \cdot L \]

\[V_{out} = L \times \left(\frac{di}{dt} \right) \]

\[V_{out} = L \times \left(\frac{di}{T_{off}} \right) \]

\[L \cdot di = V_{out} \cdot T_{off} \quad (3.4) \]

So when the two Eq. 3.3 and Eq. 3.4 in the closed and open mode switch is substituted, then the equation will be obtained circuit output voltage buck-boost converter as follows:

\[V_{in} = \frac{(V_o \cdot T_{off})}{T_{on}} \]

\[T_{on} = D \cdot T \]

\[T_{off} = (1 - D) \cdot T \]

\[V_{in} = \frac{(V_o (1 - D) \cdot T)}{(D \cdot T)} \]

\[V_{in} = \frac{(V_o (1 - D))}{D} \]

\[V_{out} = \frac{(V_{in} \cdot D)}{1 - D} \quad (3.5) \]

The buck-boost mode can generate output voltages lower or higher than the input voltage. With notes, if PWM1 duty cycle (D1) and PWM2 (D2) as switching more than
50%, then the output voltage will be higher than the input voltage. If less than 50%, then the output voltage will be lower than the input voltage.

3.4 Control system implementation on FPGA

The implementation of voltage control loops is determinate by the control flowchart as shown in Figure 3.9.

![Flowchart of Voltage Control Loop](image_url)

Figure 3.9: Voltage control loop.
For the control voltage loop, the design must be considering the value of input that will be inserted. The main goal of this system is to produce the 5volt output, fix no matter how high or how low the input is. In this project, the range for testing is limited from 0volt to 10volt but the density of this prototype is until 15volt. The starting of this system is the board will firstly read the value of input inserted to the converter. It will automatically calculate in the program either to buck or boost the value to get the output of 5volt. If the input is less than 5volt, the Boost mode will trigger. The Sboost will switching and the Sbuck will be in ON condition. When the input is more than 5volt, it will change to Buck condition where Sbuck will switch and the Sboost will be off. If the input is set at 5volt, this will cause the converter to operate in Buck-Boost mode to maintain the value. Both switch will be switching and resulted the output value of 5volt.

3.4.1 Analog-digital conversion

Taking into account the high switching frequency, the time limitations in the control method and the small current ripple, an ADC with a wide bandwidth is required. The ADC0804 is a CMOS 8-bit stand alone operator, 10 kSPS sample rate.

In analog-to-digital converter (ADC) accepts an analog input a voltage or a current and converts it to a digital value that can be read by a microprocessor. Figure 3.10 below shows a simple voltage-input ADC. It has one input, an 8-bit digital word that represents the input value.
REFERENCES

