Non-functionalized oil palm waste-derived reduced graphene oxide for methylene blue removal: Isotherm, kinetics, thermodynamics, and mass transfer mechanism

Ab Aziz, Nur Azrie Hizad and Md Ali, Umi Fazara and Ahmad, Anis Atikah and Mohamed Dzahir, Mohd Irfan Hatim and Khamidun, Mohd Hairul and Abdullah, Muhammad Faiq (2023) Non-functionalized oil palm waste-derived reduced graphene oxide for methylene blue removal: Isotherm, kinetics, thermodynamics, and mass transfer mechanism. Arabian Journal of Chemistry, 16. pp. 1-11.

[img] Text
J15676_18eca754d9561ac8d2158d0bfc7a54e6.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

The discharge of colored effluents from industries is one of the significant sources of water pollution. Therefore, there is a growing demand for efficient and low-cost treatment methods. An adsorption process with reduced graphene oxide (rGO) synthesized using a novel double carbonization and oxidation method from the natural precursor of oil palm empty fruit bunch (OPEFB) as adsorbent is a promising approach for addressing the problem. In this study, OPEFB biochar was mixed with ferrocene with a ratio of 5:1 (m/m) and oxidized under nitrogen flow at a temperature of 300 �C for 20 min, which resulted in 75.8 wt% of yield. The potential of the synthesized rGO as an effective adsorbent for dye removal from water and wastewater was explored using methylene blue (MB) as a model. Several factors were investigated, including adsorbent dosage, initial concentration, contact time, and pH, to obtain the optimum adsorption condition through batch studies. The physical and chemical characteristics of the rGO in terms of functional groups surface morphology, elemental composition, and crystallinity phase were determined through characterization. The nonlinear isotherms were appropriated using several error functions to describe the adsorption isotherm with a maximum adsorption capacity of 50.07 mg/g. The kinetic study demonstrates that MB’s adsorption fits the PFO kinetic model and agrees with Bangham’s interpretation of pore diffusion. The adsorption mechanism was found to be physisorption on the multilayer heterogeneous surface of the rGO involving p-p interaction, hydrophobic association, and electrostatic interaction. The thermodynamics study showed that the process was spontaneous and exothermic. The mass transfer mechanism study shows that the adsorption is controlled by intraparticle diffusion and involves complex pathways. The study found that the novel non- functionalized rGO could remove cationic dyes from water and wastewater.

Item Type: Article
Uncontrolled Keywords: Reduced graphene oxide; Oil palm waste; Cationic dye; Adsorption; Thermodynamics; Mass transfer mechanism
Subjects: T Technology > T Technology (General)
Divisions: Faculty of Civil Engineering and Built Environment > Department of Architecture
Depositing User: Mr. Mohamad Zulkhibri Rahmad
Date Deposited: 18 Oct 2023 02:36
Last Modified: 18 Oct 2023 02:36
URI: http://eprints.uthm.edu.my/id/eprint/10203

Actions (login required)

View Item View Item