Mubashir Hayat Khan, Mubashir Hayat Khan and Shamsul Aizam Zulkifli, Shamsul Aizam Zulkifli and Alessandro Burgio, Alessandro Burgio (2024) Adaptive Virtual Impedance Control with MPC’s Cost Function for DG Inverters in a Microgrid with Mismatched Feeder Impedances for Future Energy Communities. Sustainability, 16 (525). pp. 1-23.
Text
J17397_9d41f9bcbc6cff227033f3be4bba6eca.pdf Restricted to Registered users only Download (1MB) | Request a copy |
Abstract
More and more distributed generations (DGs), such as wind, PV or battery bank sources, are connected to electric systems or customer loads. However, the locations of these DGs are based on the highest energy that can be potentially harvested for electric power generation. Therefore, these locations create different line impedances based on the distance from the DGs to the loads or the point of common coupling (PCC). This paper presents an adaptive virtual impedance (AVI) in the predictive control scheme in order to ensure power sharing accuracy and voltage stability at the PCC in a microgrid network. The reference voltage from mismatched feeder impedances was modified by utilizing the suggested AVI-based predictive control for creating equal power sharing between the DGs in order to avoid overburdening any individual DG with low-rated power. The AVI strategy used droop control as the input control for generating equal power sharing, while the AVI output was used as the reference voltage for the finite control set–model predictive control (FCS-MPC) for creating a minimum voltage error deviation for the cost function (CF) for the inverter’s vector switching pattern in order to improve voltage stability at the PCC. The proposed AVI-based controller was tested using two DG inverter circuits in a decentralized control mode with different values of line impedance and rated power. The performance of the suggested controller was compared via MATLAB/Simulink with that of a controller based on static virtual impedance (SVI) in terms of efficiency of power sharing and voltage stability at the PCC. From the results, it was found that (1) the voltage transient magnitude for the AVI-based controller was reduced within less than 0.02 s, and the voltage at the PCC was maintained with about 0.9% error which is the least as compared with those for the SVI-based controller and (2) equal power sharing between the DGs increased during the change in the load demand when using the AVI-based controller as compared with using the SVI-based controller. The proposed controller was capable of giving more accurate power sharing between the DGs, as well as maintaining the voltage at the PCC, which makes it suitable for the power generation of consumer loads based on DG locations for future energy communities.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | adaptive virtual impedance; distribution generation; power sharing; voltage compensation; finite control set–model predictive control (FCS-MPC) |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Electrical and Electronic Engineering > FKEE |
Depositing User: | Mr. Mohamad Zulkhibri Rahmad |
Date Deposited: | 13 May 2024 11:49 |
Last Modified: | 13 May 2024 11:49 |
URI: | http://eprints.uthm.edu.my/id/eprint/10926 |
Actions (login required)
View Item |