Nik Ab Rashid, Nik Muhammad Hafiz and Hairuddin, Abdul Aziz and Md Rezali, Khairil Anas and Masuri, Siti Ujila and Al Anbagi Muntasser Abdulabbas Mossa, Al Anbagi Muntasser Abdulabbas Mossa and Jaafar, Jamiluddin and Deni Fajar Fitriyana, Deni Fajar Fitriyana (2024) Computational Fluid Dynamics (CFD) Validation and Investigation the Effect of Piston Bowl Geometries Performance on Port Fuel InjectionHomogeneous Charge Compression Ignition (PFI-HCCI) Engines. Journal of Advanced Research in Numerical Heat Transfer, 18 (1). pp. 30-48. ISSN 2735-0142
Text
J17613_d15447a85c086f1c1ced154dbc442b31.pdf Restricted to Registered users only Download (881kB) | Request a copy |
Abstract
Homogeneous charge compression ignition (HCCI) is an advanced combustion strategy proposed to provide higher efficiency and lower emissions than conventional compression ignition. Nevertheless, the operation of HCCI engines still presents formidable challenges. Preparing homogeneous mixtures and controlling the combustion phase are crucial challenges in the context of engine performance. Piston bowl geometry significantly enhances the process by improving the flow and facilitating air-fuel mixing for combustion. On that note, this study utilised the CFD simulation methods to analyse HCCI combustion in port fuel injection (PFI) mode and evaluate the effect of piston bowl geometries on engine performance. For this purpose, the CFD simulation result for a single-cylinder, four-stroke YANMAR diesel engine was validated with experimental data. The different piston bowl geometries with the same volume, compression, and equivalence ratio were then investigated numerically. The validation result of the CFD simulation offers enough confidence to continue the study with different piston bowl geometries. The results attained from the Direct Injection (DI) engine piston bowl application demonstrate a minor change in in-cylinder pressure and heat release rate. The piston bowl design employed in a Port Fuel Injection engine application exhibited different combustion phases while demonstrating similarity in attaining in-cylinder pressure. The findings for swirl induce piston bowl design indicate an enhancement of in-cylinder pressure for the Spiral Crown geometry model, reaching 9.42 MPa. The results of the study demonstrated that the piston bowl's design affected the performance of an HCCI engine.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | HCCI; Diesel; Piston Bowl; Port Fuel Injection; Computational Fluid Dynamics; Internal Combustion Engine |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Mechanical and Manufacturing Engineering |
Depositing User: | Mr. Mohamad Zulkhibri Rahmad |
Date Deposited: | 09 Jun 2024 07:37 |
Last Modified: | 09 Jun 2024 07:37 |
URI: | http://eprints.uthm.edu.my/id/eprint/11108 |
Actions (login required)
View Item |