Design optimization for the two-stage bivariate pattern recognition scheme

Mokhtar, Mohd Shukri (2015) Design optimization for the two-stage bivariate pattern recognition scheme. Masters thesis, Universiti Tun Hussein Onn Malaysia.

[img] Text (Copyright Declaration)
MOHD SHUKRI MOKHTAR COPYRIGHT DECLARATION.pdf
Restricted to Repository staff only

Download (11MB) | Request a copy
[img]
Preview
Text (24 pages)
24p MOHD SHUKRI MOKHTAR.pdf

Download (1MB) | Preview
[img] Text (Full Text)
MOHD SHUKRI MOKHTAR WATERMARK.pdf
Restricted to Registered users only

Download (19MB) | Request a copy

Abstract

In manufacturing operations, unnatural process variation has become a major contributor to a poor quality product. Therefore, monitoring and diagnosis of variation is critical in quality control. Monitoring refers to the identification of process condition either it is running within in statistically in-control or out-of-control, whereas diagnosis refers to the identification of the source of out-of-control process. Selection of SPC scheme becomes more challenging when involving two correlated variables, which are known as bivariate quality control (BQC). Generally, the traditional SPC charting schemes were known to be effective in monitoring aspects, but there were unable to provide information towards diagnosis. In order to overcome this issue, many researches proposed an artificial neural network (ANN) - based pattern recognition schemes. Such schemes were mainly utilize raw data as input representation into an ANN recognizer, which resulted in limited performance. In this research, an integrated MEWMA-ANN scheme was investigated. The optimal design parameters for the MEWMA control chart have been studied. The study focused on BQC with variation in mean shifts (μ = ±0.75 ~ 3.00) standard deviations and cross correlation function (ρ = 0.1 ~ 0.9). The monitoring and diagnosis performances were evaluated based on the average run length (ARL0, ARL1) and recognition accuracy (RA) respectively. The selected optimal design parameters with λ=0.10, H=8.64 gave better performance among the other designs, namely, average run length, ARL1=3.24 ~ 16.93 (for out-of-control process) and recognition accuracy, RA=89.05 ~ 97.73%. For in-control process, design parameters with λ=0.40, H=10.31 parameter gave superior performance with ARL0 = 676.81 ~ 921.71, which is more effective in avoiding false alarm with any correlation.

Item Type: Thesis (Masters)
Subjects: T Technology > TS Manufactures > TS155-194 Production management. Operations management
Divisions: Faculty of Mechanical and Manufacturing Engineering > Department of Mechanical Engineering
Depositing User: Mrs. Nur Nadia Md. Jurimi
Date Deposited: 03 Oct 2021 06:37
Last Modified: 03 Oct 2021 06:37
URI: http://eprints.uthm.edu.my/id/eprint/1380

Actions (login required)

View Item View Item