Glaucoma detection of retinal images based on boundary segmentation

Zainudin, Noraina Alia and Nazari, Ain and Mustafa, Mohd Marzuki and Wan Zakaria, Wan NurShazwani and Suriani, Nor Surayahani and Wan Kairuddin, Wan Nur Hafsha (2020) Glaucoma detection of retinal images based on boundary segmentation. Indonesian Journal of Electrical Engineering and Computer Science, 18 (1). pp. 377-384. ISSN 2502-4752

[img] Text
AJ 2020 (138).pdf
Restricted to Registered users only

Download (568kB) | Request a copy

Abstract

The rapid growth of technology makes it possible to implement in immediate diagnosis for patients using image processing. By using morphological processing and adaptive thresholding method for segmentation of optic disc and optic cup, various sizes of retinal fundus images captured through fundus camera from online databases can be processed. This paper explains the use of color channel separation method for pre-processing to remove noise for better optic disc and optic cup segmentation. Noise removal will improve image quality and in return help to increase segmentation standard. Then, morphological processing and adaptive thresholding method is used to extract out optic disc and optic cup from fundus image. The proposed method is tested on two publicly available online databases: RIM-ONE and DRIONS-DB. On RIM-ONE database, the average PSNR value acquired is 0.01891 and MSE is 65.62625. Meanwhile, for DRIONS-DB database, the best PSNR is 64.0928 and the MSE is 0.02647. In conclusion, the proposed method can successfully filter out any unwanted noise in the image and are able to help clearer optic disc and optic cup segmentation to be performed.

Item Type: Article
Uncontrolled Keywords: Adaptive Thresholding; Glaucoma; Morphological; Segmentation
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General) > TA1501-1820 Applied optics. Photonics
Divisions: Faculty of Electrical and Electronic Engineering > Department of Electronic Enngineering
Depositing User: Miss Afiqah Faiqah Mohd Hafiz
Date Deposited: 09 Jan 2022 01:45
Last Modified: 09 Jan 2022 01:45
URI: http://eprints.uthm.edu.my/id/eprint/5282

Actions (login required)

View Item View Item