Improvement in photovoltaic performance of rutile-phased TiO2 nanorod/nanoflower-based dye-sensitized solar cell

Ahmad, M. K. and Soon, C. F. and Nafarizal, N. and Suriani, A. B. and Mohamed, A. and Mamat, M. H. and Malek, M. F. and Shimomura, M. and Murakami, K. (2018) Improvement in photovoltaic performance of rutile-phased TiO2 nanorod/nanoflower-based dye-sensitized solar cell. Journal of the Australian Ceramic Society, 54. pp. 663-670. ISSN 2510-1560

[img] Text
AJ 2018 (170).pdf
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

An improved dye-sensitized solar cell (DSC) of rutile-phased titanium dioxide (TiO2) electrode with increased power conversion efficiency was successfully fabricated. Rutile-phased TiO2 nanorods and nanoflowers were grown directly on fluorine-doped SnO2 (FTO) by simple aqueous chemical growth technique using one-step hydrothermal process. The solution was prepared by mixing hydrochloric acid, deionized water, and titanium butoxide used as precursor. In the preparation of DSC, both TiO2 nanorods and nanoflowers, platinum (Pt), ruthenium dye N719, and DPMII electrolyte were used as photoelectrode, counter electrode, dye solution, and liquid electrolyte, respectively. The prepared rutile-phased TiO2 nanorods and nanoflowers samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The DSCs were fabricated based on the rutile-phased titanium dioxide nanorod and nanoflower photoelectrodes. For their energy conversion efficiency, I-V characteristics and electrochemical impedance spectroscopy were studied. We also investigated the effect of cetyltrimethylammonium bromide (CTAB) reaction times 2, 5, and 10 h in the preparation of rutile-phased TiO2 nanoflowers for DSC. CTAB is one of the capping agents that cover the refine surface of nanoparticles and prevent them from coagulation or aggregation. In our final result, the combination of rutile-phased TiO2 nanorod- and nanoflower-based DSCs showed best efficiency at approximately 3.11% due to its good electron transport of TiO2 nanorods and increased surface area by the TiO2 nanoflowers that had increased dye absorption.

Item Type: Article
Uncontrolled Keywords: Titanium dioxide; Nanostructures; TiO2? nanorods; TiO2? nanoflowers; Hydrothermal method; Rutile phase; Dye-sensitized solar cell
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001-1841 Production of electric energy or power. Powerplants. Central stations
Divisions: Faculty of Electrical and Electronic Engineering > Department of Electronic Enngineering
Depositing User: UiTM Student Praktikal
Date Deposited: 09 Jan 2022 06:48
Last Modified: 09 Jan 2022 06:48
URI: http://eprints.uthm.edu.my/id/eprint/5405

Actions (login required)

View Item View Item