Mohamed Zahidi, Musa and Mamat, Mohamad Hafiz and A Subk, A Shamsul Rahimi and Abdullah, Mohd Hanapiah and Hassan, Hamizura and Ahmad, Mohd Khairul and Abu Bakar, Suriani and Mohamed, Azmi and Ohtani, Bunsho (2023) Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. Nanomaterials, 13 (256). pp. 1-20.
Text
J15823_9762ac0f5e599b24ddb1cf260afb8c25.pdf Restricted to Registered users only Download (6MB) | Request a copy |
Abstract
This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 µmolg1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152%.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | semiconductors; sol-gel preparation; TiO2 nanostructure; Ta doping; structural; sensors |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Electrical and Electronic Engineering > Department of Electronic Enngineering |
Depositing User: | Mr. Mohamad Zulkhibri Rahmad |
Date Deposited: | 18 Jun 2023 01:34 |
Last Modified: | 18 Jun 2023 01:34 |
URI: | http://eprints.uthm.edu.my/id/eprint/8901 |
Actions (login required)
View Item |