Frequency selective surface (FSS) for cellular signals shelding

Abdul Khalid, Nur khalida (2015) Frequency selective surface (FSS) for cellular signals shelding. Masters thesis, Universiti Tun Hussein Onn Malaysia.

[img] Text (Copyright Declaration)
NUR KHALIDA ABDUL KHALID COPYRIGHT DECLARATION.pdf
Restricted to Repository staff only

Download (7MB) | Request a copy
[img]
Preview
Text (24 pages)
24p NUR KHALIDA ABDUL KHALID.pdf

Download (1MB) | Preview
[img] Text (Full Text)
NUR KHALIDA ABDUL KHALID WATERMARK.pdf
Restricted to Registered users only

Download (10MB) | Request a copy

Abstract

This thesis proposes a frequency selective surface (FSS) for interference control causes by the proliferation of mobile devices. FSS is a periodic structure etched on a dielectric substrate which acts as a spatial filter. The proposed FSS is designed as a band-stop filter to attenuate the cellular signals operating at GSM900, GSM1800 and IMT2000 frequency bands. The employment of the FSS is an effective shielding technique as it eliminates the need for power supply and prevents the use of mobile phone without disrupting other types of communications. All the designs and simulations are done using the Computer Simulation Technology (CST) Microwave Studio software. There are three main groups of the FSS prototype designed in this study. The first group of the FSS prototype is etched on FR-4 substrate using the photolithography technique. On the other hand, the second group of the FSS prototype is printed on glossy paper substrate using the manual fabrication and inkjet printing techniques. These two techniques are implemented using the conductive silver pen and copper nanoparticle ink, respectively. The simulated results of the conventional square loop FSS printed on paper shows a good angular stability compared to the conventional square loop FSS printed on FR-4 substrate. The utilization of the inkjet printing technique is proposed in order to overcome the limitations of the manual fabrication technique. In order to transform a non-conductive printed pattern to a conductive one, the printed FSS element has to undergo the post-processing, called sintering. This consequently leads to a final prototype of the FSS printed on polyimide film. In order to validate the simulated results experimentally, the measurement is performed inside the anechoic chamber. The measured and simulated results are shown to be in a very good agreement with each other. FSS printed on glossy paper is highly recommended due to its very low cost and environmental-friendly material.

Item Type: Thesis (Masters)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800-8360 Electronics
Divisions: Faculty of Electrical and Electronic Engineering > Department of Electrical Engineering
Depositing User: Mrs. Nur Nadia Md. Jurimi
Date Deposited: 03 Oct 2021 06:45
Last Modified: 03 Oct 2021 06:45
URI: http://eprints.uthm.edu.my/id/eprint/1406

Actions (login required)

View Item View Item