Ahmad, Siti Zu Nurain and Wan Salleh, Wan Norharyati and Mohd Yusop, Mohd Zamri and Hamdan, Rafidah and Aziz, Farhana and Awang, Nor Asikin and Ismail, Ahmad Fauzi (2023) Synthesis of zeolitic imidazolate framework-8 modified graphene oxide composite and its application for lead removal. Society of Chemical Industry. pp. 1-9.
Text
J15798_c8a1b4ae2caf1039d4da0cc78f9ffe6a.pdf Restricted to Registered users only Download (1MB) | Request a copy |
Abstract
BACKGROUND: The removal of lead ions (Pb2+) from industrial wastewater can be achieved using adsorption technology. Composites of zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were prepared via room temperature synthesis (RTS) using RO water as the solvent and by mixing GO with separated parts of ZIF-8 precursors before its combination. Three weight percentages of GO, 10wt%, 30wt% and 50wt%, were used to synthesize ZGH10, ZGH30 and ZGH50 to determine optimum preparation and application conditions. Results: ZGH30 showed the most outstanding performance as an adsorbent for Pb2+ removal from aqueous solution. As captured by field emission scanning electron microscopy image, ZGH30 showed an adequate amount of ZIF-8 grown on all surfaces of thr GO sheet, with an appropriate exposure of GO sheet layers for further Pb2+ interaction. The Pb2+ adsorption test revealed that ZGH30 obtained the optimum operating values between pH 5 and 6, using 10 mg dosage and it could remove ≤97% of 100 mg L−1 Pb2+. Additionally, ZGH30 achieved the most rapid equilibrium time within 10 min, similar to ZGH50, as compared to their individual components, ZIF-8 (240 min) and GO (300 min). The mechanism of Pb2+ adsorption fitted well with a Langmuir isotherm and pseudo-second-order kinetic model. The theoretical maximum adsorption capacities obtained through Langmuir isotherm were 200, 454.55, 476.19, 555.56 and 454.55 mg g−1 , for GO, ZH, ZGH10, ZGH30 and ZGH50, respectively.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | adsorption; heavy metals removal; loading ratio; graphene oxide; metal organic framework; ZIF |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Civil Engineering and Built Environment > FKAAB |
Depositing User: | Mr. Mohamad Zulkhibri Rahmad |
Date Deposited: | 14 Jul 2024 03:01 |
Last Modified: | 14 Jul 2024 03:01 |
URI: | http://eprints.uthm.edu.my/id/eprint/11347 |
Actions (login required)
View Item |