CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images

Irfan Javid, Irfan Javid and Ghazali, Rozaida and Waddah Saeed, Waddah Saeed and Tuba Batool, Tuba Batool and Ebrahim Al-Wajih, Ebrahim Al-Wajih (2024) CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images. Sustainability, 16 (117). pp. 1-13.

[img] Text
J17398_13198b9ac9a065937e5f96ac75160563.pdf
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

The escalation in vehicular traffic, in conjunction with global population growth, has precipitated heightened road congestion, augmented air pollution, and a rise in vehicular accidents. Over the past decade, the global vehicular count has witnessed a substantial surge. In this context, traffic monitoring emerges as a paramount challenge, especially within developing nations. This research introduces an innovative system for vehicle detection and categorization aimed at intelligent traffic monitoring. The system utilizes a convolutional neural network-based U-Net model for the segmentation of aerial images. After segmentation, the outputs are further analyzed for vehicle identification. This vehicle detection utilizes an advanced spatial pyramid pooling (ASPP) mechanism which refines the spatial partitions of the image and captures intricate details, enhancing the accuracy and precision of the detection process. Detected vehicles are then categorized into distinct subcategories. For the effective management and control of high-density traffic flow, the extended Kalman filter (EKF) technique is employed, thereby reducing the reliance on human oversight. In experimental evaluations, our proposed model exhibits exemplary vehicle detection capabilities across the German Aerospace Center (DLR3K) and the Vehicle Detection in Aerial Imagery (VEDAI) datasets. Potential applications of the system encompass vehicle identification in traffic streams, traffic congestion assessment, intersection traffic density analysis, differentiation of vehicle types, and pedestrian pathway determination.

Item Type: Article
Uncontrolled Keywords: spatial pyramid pooling; U-Net; semantic segmentation; extended Kalman filter; vehicle categorization and recognition
Subjects: T Technology > T Technology (General)
Divisions: Faculty of Computer Science and Information Technology > FSKTM
Depositing User: Mr. Mohamad Zulkhibri Rahmad
Date Deposited: 13 May 2024 11:49
Last Modified: 13 May 2024 11:49
URI: http://eprints.uthm.edu.my/id/eprint/10927

Actions (login required)

View Item View Item