Shuban, Farah Syahidah and Idris, Maizlinda Izwana (2024) Fabrication of natural and bio-based wound healing material from alginate and beeswax. In: AIP Conference Proceedings.
Text
P16618_48263b83e8642b4757e7856672a5f915 5.pdf Download (995kB) |
Abstract
Alginate is a natural polysaccharide derived from brown algae and exhibits the following properties: biocompatible, biodegradable and non-toxic. Beeswax is a secretion that is produced by young working bees. For this research project, alginate and beeswax are homogenized together to form bio-based films for wound healing applications. Solution casting method was used to fabricate the films of 1 wt% and 2 wt% sodium alginate (SA) with 0-5 g beeswax. The films were then characterized and tested using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), and contact angle measurement. FTIR spectra revealed that all films showed spectra from both SA and beeswax pellet, which implies that alginate and beeswax coexist in the film. SEM images showed smooth surfaces for films of 1 wt% and 2 wt% SA with 0 g beeswax and rough surfaces with beeswax particles for films of 1 wt% and 2 wt% SA with 1-5 g beeswax. AFM results revealed that the surface roughness of alginate and beeswax films increased with an increasing amount of beeswax and film of 2 wt% SA with 5 g beeswax recorded the highest surface roughness value. Contact angle measurement revealed that as more beeswax was introduced into alginate solution, the contact angle value increases due to the hydrophobic nature of beeswax. It can be concluded that these alginate and beeswax films can be applied as both hydrophilic and hydrophobic wound dressing materials
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Mechanical and Manufacturing Engineering |
Depositing User: | Mrs. Sabarina Che Mat |
Date Deposited: | 03 Sep 2024 08:51 |
Last Modified: | 03 Sep 2024 08:51 |
URI: | http://eprints.uthm.edu.my/id/eprint/11587 |
Actions (login required)
View Item |